Using Random Forests and Logistic Regression for Performance Prediction of Latin American ADRS and Banks

Descripción del Articulo

In the paper, random forests and logistic regressions’ support of financial analysis functions’ predictive tool to forecast corporate performance and rank accounting and corporate variables according to their impact on performance is demonstrated. Ten-fold cross-validation experiments are conducted...

Descripción completa

Detalles Bibliográficos
Autor: Creamer, Germán G.
Formato: artículo
Fecha de Publicación:2009
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/194760
Enlace del recurso:https://repositorio.pucp.edu.pe/index/handle/123456789/194760
Nivel de acceso:acceso abierto
Materia:Data mining
Financial analysis
Logistic regression
Machine learning
Random forests
https://purl.org/pe-repo/ocde/ford#5.02.04
id RPUC_b560eb7174118c68171d945ec2b25cee
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/194760
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Creamer, Germán G.2023-07-21T19:18:09Z2023-07-21T19:18:09Z2009https://repositorio.pucp.edu.pe/index/handle/123456789/194760In the paper, random forests and logistic regressions’ support of financial analysis functions’ predictive tool to forecast corporate performance and rank accounting and corporate variables according to their impact on performance is demonstrated. Ten-fold cross-validation experiments are conducted on one sample each of Latin American depository receipts (ADRs) and Latin American banks. Random forests indicate that the most important variables that affect ADRs performance are size and the law-and-order tradition; the most important variables that affect banks are size, long-term assets to deposits, number of directors, and efficiency of the legal system. The interpretation of predictive models for a small sample improved when the capacity of random forests to rank and predict with the parameters of a logistic regression were combined.engPontificia Universidad Católica del Perú. CENTRUMPEurn:issn:1851-6599info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0Journal of CENTRUM Cathedra, Vol. 2, Issue 1reponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPData miningFinancial analysisLogistic regressionMachine learningRandom forestshttps://purl.org/pe-repo/ocde/ford#5.02.04Using Random Forests and Logistic Regression for Performance Prediction of Latin American ADRS and Banksinfo:eu-repo/semantics/articleArtículoORIGINALJCC-2.1-20.pdfJCC-2.1-20.pdfTexto completoapplication/pdf288846https://repositorio.pucp.edu.pe/bitstreams/1b28452f-b642-4b49-ad94-e5f08574ad73/downloade01e9cec3ad2d86f2ff8cdb269cd67bdMD51trueAnonymousREADTHUMBNAILJCC-2.1-20.pdf.jpgJCC-2.1-20.pdf.jpgIM Thumbnailimage/jpeg34750https://repositorio.pucp.edu.pe/bitstreams/00df3cf0-edfb-459c-9cf4-9f0e499383c8/downloade7a65c18d43da9e3a8a15ed0c8c3d4d9MD52falseAnonymousREAD20.500.14657/194760oai:repositorio.pucp.edu.pe:20.500.14657/1947602025-04-11 09:58:17.654http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.en_US.fl_str_mv Using Random Forests and Logistic Regression for Performance Prediction of Latin American ADRS and Banks
title Using Random Forests and Logistic Regression for Performance Prediction of Latin American ADRS and Banks
spellingShingle Using Random Forests and Logistic Regression for Performance Prediction of Latin American ADRS and Banks
Creamer, Germán G.
Data mining
Financial analysis
Logistic regression
Machine learning
Random forests
https://purl.org/pe-repo/ocde/ford#5.02.04
title_short Using Random Forests and Logistic Regression for Performance Prediction of Latin American ADRS and Banks
title_full Using Random Forests and Logistic Regression for Performance Prediction of Latin American ADRS and Banks
title_fullStr Using Random Forests and Logistic Regression for Performance Prediction of Latin American ADRS and Banks
title_full_unstemmed Using Random Forests and Logistic Regression for Performance Prediction of Latin American ADRS and Banks
title_sort Using Random Forests and Logistic Regression for Performance Prediction of Latin American ADRS and Banks
author Creamer, Germán G.
author_facet Creamer, Germán G.
author_role author
dc.contributor.author.fl_str_mv Creamer, Germán G.
dc.subject.en_US.fl_str_mv Data mining
Financial analysis
Logistic regression
Machine learning
Random forests
topic Data mining
Financial analysis
Logistic regression
Machine learning
Random forests
https://purl.org/pe-repo/ocde/ford#5.02.04
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.02.04
description In the paper, random forests and logistic regressions’ support of financial analysis functions’ predictive tool to forecast corporate performance and rank accounting and corporate variables according to their impact on performance is demonstrated. Ten-fold cross-validation experiments are conducted on one sample each of Latin American depository receipts (ADRs) and Latin American banks. Random forests indicate that the most important variables that affect ADRs performance are size and the law-and-order tradition; the most important variables that affect banks are size, long-term assets to deposits, number of directors, and efficiency of the legal system. The interpretation of predictive models for a small sample improved when the capacity of random forests to rank and predict with the parameters of a logistic regression were combined.
publishDate 2009
dc.date.accessioned.none.fl_str_mv 2023-07-21T19:18:09Z
dc.date.available.none.fl_str_mv 2023-07-21T19:18:09Z
dc.date.issued.fl_str_mv 2009
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo
format article
dc.identifier.uri.none.fl_str_mv https://repositorio.pucp.edu.pe/index/handle/123456789/194760
url https://repositorio.pucp.edu.pe/index/handle/123456789/194760
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:1851-6599
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
dc.publisher.none.fl_str_mv Pontificia Universidad Católica del Perú. CENTRUM
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Pontificia Universidad Católica del Perú. CENTRUM
dc.source.es_ES.fl_str_mv Journal of CENTRUM Cathedra, Vol. 2, Issue 1
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
bitstream.url.fl_str_mv https://repositorio.pucp.edu.pe/bitstreams/1b28452f-b642-4b49-ad94-e5f08574ad73/download
https://repositorio.pucp.edu.pe/bitstreams/00df3cf0-edfb-459c-9cf4-9f0e499383c8/download
bitstream.checksum.fl_str_mv e01e9cec3ad2d86f2ff8cdb269cd67bd
e7a65c18d43da9e3a8a15ed0c8c3d4d9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835639680677183488
score 13.936249
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).