Using Random Forests and Logistic Regression for Performance Prediction of Latin American ADRS and Banks
Descripción del Articulo
In the paper, random forests and logistic regressions’ support of financial analysis functions’ predictive tool to forecast corporate performance and rank accounting and corporate variables according to their impact on performance is demonstrated. Ten-fold cross-validation experiments are conducted...
| Autor: | |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2009 |
| Institución: | Pontificia Universidad Católica del Perú |
| Repositorio: | PUCP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/194760 |
| Enlace del recurso: | https://repositorio.pucp.edu.pe/index/handle/123456789/194760 |
| Nivel de acceso: | acceso abierto |
| Materia: | Data mining Financial analysis Logistic regression Machine learning Random forests https://purl.org/pe-repo/ocde/ford#5.02.04 |
| id |
RPUC_b560eb7174118c68171d945ec2b25cee |
|---|---|
| oai_identifier_str |
oai:repositorio.pucp.edu.pe:20.500.14657/194760 |
| network_acronym_str |
RPUC |
| network_name_str |
PUCP-Institucional |
| repository_id_str |
2905 |
| spelling |
Creamer, Germán G.2023-07-21T19:18:09Z2023-07-21T19:18:09Z2009https://repositorio.pucp.edu.pe/index/handle/123456789/194760In the paper, random forests and logistic regressions’ support of financial analysis functions’ predictive tool to forecast corporate performance and rank accounting and corporate variables according to their impact on performance is demonstrated. Ten-fold cross-validation experiments are conducted on one sample each of Latin American depository receipts (ADRs) and Latin American banks. Random forests indicate that the most important variables that affect ADRs performance are size and the law-and-order tradition; the most important variables that affect banks are size, long-term assets to deposits, number of directors, and efficiency of the legal system. The interpretation of predictive models for a small sample improved when the capacity of random forests to rank and predict with the parameters of a logistic regression were combined.engPontificia Universidad Católica del Perú. CENTRUMPEurn:issn:1851-6599info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0Journal of CENTRUM Cathedra, Vol. 2, Issue 1reponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPData miningFinancial analysisLogistic regressionMachine learningRandom forestshttps://purl.org/pe-repo/ocde/ford#5.02.04Using Random Forests and Logistic Regression for Performance Prediction of Latin American ADRS and Banksinfo:eu-repo/semantics/articleArtículoORIGINALJCC-2.1-20.pdfJCC-2.1-20.pdfTexto completoapplication/pdf288846https://repositorio.pucp.edu.pe/bitstreams/1b28452f-b642-4b49-ad94-e5f08574ad73/downloade01e9cec3ad2d86f2ff8cdb269cd67bdMD51trueAnonymousREADTHUMBNAILJCC-2.1-20.pdf.jpgJCC-2.1-20.pdf.jpgIM Thumbnailimage/jpeg34750https://repositorio.pucp.edu.pe/bitstreams/00df3cf0-edfb-459c-9cf4-9f0e499383c8/downloade7a65c18d43da9e3a8a15ed0c8c3d4d9MD52falseAnonymousREAD20.500.14657/194760oai:repositorio.pucp.edu.pe:20.500.14657/1947602025-04-11 09:58:17.654http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe |
| dc.title.en_US.fl_str_mv |
Using Random Forests and Logistic Regression for Performance Prediction of Latin American ADRS and Banks |
| title |
Using Random Forests and Logistic Regression for Performance Prediction of Latin American ADRS and Banks |
| spellingShingle |
Using Random Forests and Logistic Regression for Performance Prediction of Latin American ADRS and Banks Creamer, Germán G. Data mining Financial analysis Logistic regression Machine learning Random forests https://purl.org/pe-repo/ocde/ford#5.02.04 |
| title_short |
Using Random Forests and Logistic Regression for Performance Prediction of Latin American ADRS and Banks |
| title_full |
Using Random Forests and Logistic Regression for Performance Prediction of Latin American ADRS and Banks |
| title_fullStr |
Using Random Forests and Logistic Regression for Performance Prediction of Latin American ADRS and Banks |
| title_full_unstemmed |
Using Random Forests and Logistic Regression for Performance Prediction of Latin American ADRS and Banks |
| title_sort |
Using Random Forests and Logistic Regression for Performance Prediction of Latin American ADRS and Banks |
| author |
Creamer, Germán G. |
| author_facet |
Creamer, Germán G. |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Creamer, Germán G. |
| dc.subject.en_US.fl_str_mv |
Data mining Financial analysis Logistic regression Machine learning Random forests |
| topic |
Data mining Financial analysis Logistic regression Machine learning Random forests https://purl.org/pe-repo/ocde/ford#5.02.04 |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#5.02.04 |
| description |
In the paper, random forests and logistic regressions’ support of financial analysis functions’ predictive tool to forecast corporate performance and rank accounting and corporate variables according to their impact on performance is demonstrated. Ten-fold cross-validation experiments are conducted on one sample each of Latin American depository receipts (ADRs) and Latin American banks. Random forests indicate that the most important variables that affect ADRs performance are size and the law-and-order tradition; the most important variables that affect banks are size, long-term assets to deposits, number of directors, and efficiency of the legal system. The interpretation of predictive models for a small sample improved when the capacity of random forests to rank and predict with the parameters of a logistic regression were combined. |
| publishDate |
2009 |
| dc.date.accessioned.none.fl_str_mv |
2023-07-21T19:18:09Z |
| dc.date.available.none.fl_str_mv |
2023-07-21T19:18:09Z |
| dc.date.issued.fl_str_mv |
2009 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.other.none.fl_str_mv |
Artículo |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://repositorio.pucp.edu.pe/index/handle/123456789/194760 |
| url |
https://repositorio.pucp.edu.pe/index/handle/123456789/194760 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
urn:issn:1851-6599 |
| dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0 |
| dc.publisher.none.fl_str_mv |
Pontificia Universidad Católica del Perú. CENTRUM |
| dc.publisher.country.none.fl_str_mv |
PE |
| publisher.none.fl_str_mv |
Pontificia Universidad Católica del Perú. CENTRUM |
| dc.source.es_ES.fl_str_mv |
Journal of CENTRUM Cathedra, Vol. 2, Issue 1 |
| dc.source.none.fl_str_mv |
reponame:PUCP-Institucional instname:Pontificia Universidad Católica del Perú instacron:PUCP |
| instname_str |
Pontificia Universidad Católica del Perú |
| instacron_str |
PUCP |
| institution |
PUCP |
| reponame_str |
PUCP-Institucional |
| collection |
PUCP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.pucp.edu.pe/bitstreams/1b28452f-b642-4b49-ad94-e5f08574ad73/download https://repositorio.pucp.edu.pe/bitstreams/00df3cf0-edfb-459c-9cf4-9f0e499383c8/download |
| bitstream.checksum.fl_str_mv |
e01e9cec3ad2d86f2ff8cdb269cd67bd e7a65c18d43da9e3a8a15ed0c8c3d4d9 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la PUCP |
| repository.mail.fl_str_mv |
repositorio@pucp.pe |
| _version_ |
1835639680677183488 |
| score |
13.936249 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).