Teorema de Pick

Descripción del Articulo

Los polígonos enteros, en particular los politopos enteros en el plano, pueden ser descritos por vértices de puntos enteros. Por supuesto, estos puntos no son necesariamente los únicos con la cualidad de ser enteros dentro del polígono. A cada punto entero dentro de estos objetos podemos asignarle u...

Descripción completa

Detalles Bibliográficos
Autor: Sotomayor Ponte, José Carlos Manuel
Formato: tesis de grado
Fecha de Publicación:2020
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/180780
Enlace del recurso:http://hdl.handle.net/20.500.12404/20195
Nivel de acceso:acceso abierto
Materia:Geometría discreta
Poliedros
http://purl.org/pe-repo/ocde/ford#1.01.00
Descripción
Sumario:Los polígonos enteros, en particular los politopos enteros en el plano, pueden ser descritos por vértices de puntos enteros. Por supuesto, estos puntos no son necesariamente los únicos con la cualidad de ser enteros dentro del polígono. A cada punto entero dentro de estos objetos podemos asignarle un peso, de acuerdo con el rol que cumpla en el mismo: vértice, lado o interior. A la suma ponderada de los puntos de coordenadas enteras del polígono se le asigna un nombre conocido por todos: es en realidad el área. Podría ser una forma poco intuitiva de hallar el área, pero gracias a ella también podemos obtener propiedades que se pueden considerar poco intuitivas, pero no por ello menos importantes. Sin embargo, esta propiedad es única y exclusivamente para polígonos en el plano. Por ejemplo, el tetraedro de Reeve nos encara con una obstrucción para efectuar el mismo trabajo en el espacio R3. La teoría de Ehrhart ayuda a resolver cuestiones análogas en dimensiones mayores a 2.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).