A Note on the Size of the ADF Test with Additive Outliers and Fractional Errors. A Reapraisal about the (non) stationarity of the Latin-American Inflation Series
Descripción del Articulo
En esta nota se analiza el tamaño empírico del estadístico Dickey y Fuller aumentado (ADF), propuesto por Perron y Rodríguez (2003), cuando los errores son fraccionales. Este estadístico se basa en un procedimiento de búsqueda de valores atípicos aditivos basado en las primeras diferencias de los da...
Autores: | , |
---|---|
Formato: | documento de trabajo |
Fecha de Publicación: | 2013 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/46997 |
Enlace del recurso: | http://repositorio.pucp.edu.pe/index/handle/123456789/46997 |
Nivel de acceso: | acceso abierto |
Materia: | Outliers aditivos Errores ARFIMA Test ADF http://purl.org/pe-repo/ocde/ford#5.02.00 |
Sumario: | En esta nota se analiza el tamaño empírico del estadístico Dickey y Fuller aumentado (ADF), propuesto por Perron y Rodríguez (2003), cuando los errores son fraccionales. Este estadístico se basa en un procedimiento de búsqueda de valores atípicos aditivos basado en las primeras diferencias de los datos denominado tau(d). Las simulaciones muestran que el tamaño empírico del estadístico ADF no es afectado por los errores fraccionales confirmando el argumento de Perron y Rodríguez (2003) que el procedimiento tau(d) es robusto a las desviaciones del marco de raíz unitaria. En particular, los resultados muestran una baja sensibilidad del tamaño del estadístico ADF respecto al parámetro fraccional (d). Sin embargo, como es de esperar, cuando hay una fuerte autocorrelación negativa de tipo promedio móvil o autocorrelación autorregresiva negativa, el estadístico ADF tiene un tamaño exacto mayor que el nominal. Estas dificultades desaparecen cuando aumenta la muestra (a partir de T = 100 a T = 200). La aplicación empírica a ocho series de inflación latinoamericana trimestral proporciona evidencia de la importancia de tener en cuenta las variables ficticias para controlar por los outliers aditivos detectados. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).