Representación y clasificación de productos tensoriales torcidos

Descripción del Articulo

Esta tesis estudia la clasificación de los productos tensoriales torcidos de dos álgebras asociativas con unidad A y B, es decir, las estructuras de álgebra que puede adoptar el producto tensorial de espacios vectoriales subyacentes A B, compatibles con las estructuras de A y B. En primer lugar desa...

Descripción completa

Detalles Bibliográficos
Autor: Arce Flores, Jack Denne
Formato: tesis doctoral
Fecha de Publicación:2017
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/154856
Enlace del recurso:http://hdl.handle.net/20.500.12404/9949
Nivel de acceso:acceso abierto
Materia:Productos tensoriales
Álgebras asociativas
Álgebra tensorial
Cálculo de tensores
https://purl.org/pe-repo/ocde/ford#1.01.00
id RPUC_3873d1324b3372b6cc64d63ba6bd76fe
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/154856
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Valqui Haase, Christian HolgerGuccione, Juan JoséArce Flores, Jack Denne2018-01-25T17:01:50Z2018-01-25T17:01:50Z20172018-01-25http://hdl.handle.net/20.500.12404/9949Esta tesis estudia la clasificación de los productos tensoriales torcidos de dos álgebras asociativas con unidad A y B, es decir, las estructuras de álgebra que puede adoptar el producto tensorial de espacios vectoriales subyacentes A B, compatibles con las estructuras de A y B. En primer lugar desarrollamos la teoría básica que se encuentra dispersa en varios artículos de investigación y establecemos como primer resultado propio, la dualidad que existe entre las aplicaciones de torcimiento de un producto tensorial torcido y su álgebra opuesta. Este resultado parece haber sido conocido entre los expertos del área sin embargo no se encuentra ninguna prueba en la literatura. Luego estudiamos el caso en que uno de los factores del producto tensorial torcido tiene dimensión finita. Por ejemplo si A tiene dimensión finita, se establece que bajo estas condiciones definir una aplicación de torcimiento de A con B es equivalente a definir un par de representaciones matriciales (p , ph), una de B y otra de Aop. La primera tiene coeficientes en A y la segunda tiene coeficientes en Endk(B). Además, obtenemos una representación matricial el del producto tensorial torcidos en Mn(B). Estas representaciones constituyen el resultado principal propio en el segundo capítulo. Como aplicación describimos los productos tensoriales torcidos estudiados por Cibils, Jara et al. y Guccione et al. en términos del par de representaciones (p , ph) y deducimos las condiciones que permiten a los autores en cada uno de los casos lograr una clasificación (parcial o total). A continuación nos enfocamos en las aplicaciones de torcimiento de Kn con Km. Establecemos una caracterización de estas aplicaciones de torcimiento en términos de matrices con coeficientes en K, la cual se debe a que ambas álgebras son conmutativas y de dimensión finita. Tal caracterización nos permite clasificar completamente las aplicaciones de torcimiento de rango reducido 1 que en nuestro lenguaje se ve muy diferente de la clasificación alcanzada por Jara et al.. Luego desarrollamos herramientas para el estudio de dos familias de productos tensoriales torcidos: las estándar y las casi-estándar. Estas herramientas permiten estudiar la relación entre las aplicaciones de torcimiento estándar, y casi-estándar, con las álgebras de camino de Quivers, y establecen una generalización del resultado obtenido por Cibils para n = 2. Para analizar utilizamos todos de los resultados obtenidos para clasificar los productos tensoriales torcidos en el caso de dimensiones bajas, incluyendo todas las aplicaciones de torcimiento de K3 con K3.spaPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/Productos tensorialesÁlgebras asociativasÁlgebra tensorialCálculo de tensoreshttps://purl.org/pe-repo/ocde/ford#1.01.00Representación y clasificación de productos tensoriales torcidosinfo:eu-repo/semantics/doctoralThesisTesis de doctoradoreponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPDoctor en MatemáticasDoctoradoPontificia Universidad Católica del Perú. Escuela de PosgradoMatemáticas09381458541038https://purl.org/pe-repo/renati/level#doctorhttp://purl.org/pe-repo/renati/type#tesis20.500.14657/154856oai:repositorio.pucp.edu.pe:20.500.14657/1548562024-06-10 09:27:40.296http://creativecommons.org/licenses/by-nc-sa/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv Representación y clasificación de productos tensoriales torcidos
title Representación y clasificación de productos tensoriales torcidos
spellingShingle Representación y clasificación de productos tensoriales torcidos
Arce Flores, Jack Denne
Productos tensoriales
Álgebras asociativas
Álgebra tensorial
Cálculo de tensores
https://purl.org/pe-repo/ocde/ford#1.01.00
title_short Representación y clasificación de productos tensoriales torcidos
title_full Representación y clasificación de productos tensoriales torcidos
title_fullStr Representación y clasificación de productos tensoriales torcidos
title_full_unstemmed Representación y clasificación de productos tensoriales torcidos
title_sort Representación y clasificación de productos tensoriales torcidos
author Arce Flores, Jack Denne
author_facet Arce Flores, Jack Denne
author_role author
dc.contributor.advisor.fl_str_mv Valqui Haase, Christian Holger
Guccione, Juan José
dc.contributor.author.fl_str_mv Arce Flores, Jack Denne
dc.subject.es_ES.fl_str_mv Productos tensoriales
Álgebras asociativas
Álgebra tensorial
Cálculo de tensores
topic Productos tensoriales
Álgebras asociativas
Álgebra tensorial
Cálculo de tensores
https://purl.org/pe-repo/ocde/ford#1.01.00
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.01.00
description Esta tesis estudia la clasificación de los productos tensoriales torcidos de dos álgebras asociativas con unidad A y B, es decir, las estructuras de álgebra que puede adoptar el producto tensorial de espacios vectoriales subyacentes A B, compatibles con las estructuras de A y B. En primer lugar desarrollamos la teoría básica que se encuentra dispersa en varios artículos de investigación y establecemos como primer resultado propio, la dualidad que existe entre las aplicaciones de torcimiento de un producto tensorial torcido y su álgebra opuesta. Este resultado parece haber sido conocido entre los expertos del área sin embargo no se encuentra ninguna prueba en la literatura. Luego estudiamos el caso en que uno de los factores del producto tensorial torcido tiene dimensión finita. Por ejemplo si A tiene dimensión finita, se establece que bajo estas condiciones definir una aplicación de torcimiento de A con B es equivalente a definir un par de representaciones matriciales (p , ph), una de B y otra de Aop. La primera tiene coeficientes en A y la segunda tiene coeficientes en Endk(B). Además, obtenemos una representación matricial el del producto tensorial torcidos en Mn(B). Estas representaciones constituyen el resultado principal propio en el segundo capítulo. Como aplicación describimos los productos tensoriales torcidos estudiados por Cibils, Jara et al. y Guccione et al. en términos del par de representaciones (p , ph) y deducimos las condiciones que permiten a los autores en cada uno de los casos lograr una clasificación (parcial o total). A continuación nos enfocamos en las aplicaciones de torcimiento de Kn con Km. Establecemos una caracterización de estas aplicaciones de torcimiento en términos de matrices con coeficientes en K, la cual se debe a que ambas álgebras son conmutativas y de dimensión finita. Tal caracterización nos permite clasificar completamente las aplicaciones de torcimiento de rango reducido 1 que en nuestro lenguaje se ve muy diferente de la clasificación alcanzada por Jara et al.. Luego desarrollamos herramientas para el estudio de dos familias de productos tensoriales torcidos: las estándar y las casi-estándar. Estas herramientas permiten estudiar la relación entre las aplicaciones de torcimiento estándar, y casi-estándar, con las álgebras de camino de Quivers, y establecen una generalización del resultado obtenido por Cibils para n = 2. Para analizar utilizamos todos de los resultados obtenidos para clasificar los productos tensoriales torcidos en el caso de dimensiones bajas, incluyendo todas las aplicaciones de torcimiento de K3 con K3.
publishDate 2017
dc.date.created.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2018-01-25T17:01:50Z
dc.date.available.none.fl_str_mv 2018-01-25T17:01:50Z
dc.date.issued.fl_str_mv 2018-01-25
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.other.none.fl_str_mv Tesis de doctorado
format doctoralThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/9949
url http://hdl.handle.net/20.500.12404/9949
dc.language.iso.es_ES.fl_str_mv spa
language spa
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.none.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835638729748774912
score 13.971837
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).