1
artículo
Publicado 2011
Enlace
Enlace
En el presente artículo estudiaremos los entrelazamientos de un álgebra asociativa con unidad A y el álgebra depolinomios de Laurent k[y1]. Asimismo, estableceremos condiciones para las cuales es posible prolongar una extension polinomial de A a un entrelazamiento de A conk[y1]. Por ultimo, presentaremos dos familias de algebras de Hopf sobre algunos entrelazados de k[x] y k[y1].
2
tesis doctoral
Esta tesis estudia la clasificación de los productos tensoriales torcidos de dos álgebras asociativas con unidad A y B, es decir, las estructuras de álgebra que puede adoptar el producto tensorial de espacios vectoriales subyacentes A B, compatibles con las estructuras de A y B. En primer lugar desarrollamos la teoría básica que se encuentra dispersa en varios artículos de investigación y establecemos como primer resultado propio, la dualidad que existe entre las aplicaciones de torcimiento de un producto tensorial torcido y su álgebra opuesta. Este resultado parece haber sido conocido entre los expertos del área sin embargo no se encuentra ninguna prueba en la literatura. Luego estudiamos el caso en que uno de los factores del producto tensorial torcido tiene dimensión finita. Por ejemplo si A tiene dimensión finita, se establece que bajo estas condiciones definir una aplicac...
3
informe técnico
Publicado 2013
Enlace
Enlace
En el capítulo 1, desarrollamos los conceptos básicos y clásicos de la teoría de álgebras de Hopf, en la cual se muestra la dualidad en el caso nito dimensional, y ejemplos relacionados a la teoría de grupos. También tratamos una caracterización de las álgebras de Hopf debida a A. van Daele, que sirve de motivación únicamente para el capítulo siguiente. En el capítulo 2, desarrollamos la teoría de álgebras de Hopf de de multiplicadores desarrollada por A. van Daele, y se extiende la dualidad que existe para ellas a los grupos cuánticos algebraicos. El capítulo 3, es un resumen de resultados (sin pruebas) concernientes a los productos tensoriales torcidos o entrelazamientos de [15], [20], [18] y [19] que serán utilizados en el capítulo 4. En este último capítulo presentamos los entrelazamientos con el álgebra k[y ±1]. Los principales resultados nuevos de esta tesis ...
4
tesis doctoral
Esta tesis estudia la clasificación de los productos tensoriales torcidos de dos álgebras asociativas con unidad A y B, es decir, las estructuras de álgebra que puede adoptar el producto tensorial de espacios vectoriales subyacentes A B, compatibles con las estructuras de A y B. En primer lugar desarrollamos la teoría básica que se encuentra dispersa en varios artículos de investigación y establecemos como primer resultado propio, la dualidad que existe entre las aplicaciones de torcimiento de un producto tensorial torcido y su álgebra opuesta. Este resultado parece haber sido conocido entre los expertos del área sin embargo no se encuentra ninguna prueba en la literatura. Luego estudiamos el caso en que uno de los factores del producto tensorial torcido tiene dimensión finita. Por ejemplo si A tiene dimensión finita, se establece que bajo estas condiciones definir una aplicac...