Álgebras de Hopf, dualidad y productos torcidos

Descripción del Articulo

En el capítulo 1, desarrollamos los conceptos básicos y clásicos de la teoría de álgebras de Hopf, en la cual se muestra la dualidad en el caso nito dimensional, y ejemplos relacionados a la teoría de grupos. También tratamos una caracterización de las álgebras de Hopf debida a A. van Daele, que sir...

Descripción completa

Detalles Bibliográficos
Autor: Arce Flores, Jack Denne
Formato: informe técnico
Fecha de Publicación:2013
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/123817
Enlace del recurso:http://repositorio.pucp.edu.pe/index/handle/123456789/123817
Nivel de acceso:acceso abierto
Materia:Álgebras de Hopf
https://purl.org/pe-repo/ocde/ford#1.00.00
id RPUC_12ddfeea707d895c1f9c607898552094
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/123817
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
dc.title.es_ES.fl_str_mv Álgebras de Hopf, dualidad y productos torcidos
title Álgebras de Hopf, dualidad y productos torcidos
spellingShingle Álgebras de Hopf, dualidad y productos torcidos
Arce Flores, Jack Denne
Álgebras de Hopf
https://purl.org/pe-repo/ocde/ford#1.00.00
title_short Álgebras de Hopf, dualidad y productos torcidos
title_full Álgebras de Hopf, dualidad y productos torcidos
title_fullStr Álgebras de Hopf, dualidad y productos torcidos
title_full_unstemmed Álgebras de Hopf, dualidad y productos torcidos
title_sort Álgebras de Hopf, dualidad y productos torcidos
author Arce Flores, Jack Denne
author_facet Arce Flores, Jack Denne
author_role author
dc.contributor.author.fl_str_mv Arce Flores, Jack Denne
dc.subject.es_ES.fl_str_mv Álgebras de Hopf
topic Álgebras de Hopf
https://purl.org/pe-repo/ocde/ford#1.00.00
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.00.00
description En el capítulo 1, desarrollamos los conceptos básicos y clásicos de la teoría de álgebras de Hopf, en la cual se muestra la dualidad en el caso nito dimensional, y ejemplos relacionados a la teoría de grupos. También tratamos una caracterización de las álgebras de Hopf debida a A. van Daele, que sirve de motivación únicamente para el capítulo siguiente. En el capítulo 2, desarrollamos la teoría de álgebras de Hopf de de multiplicadores desarrollada por A. van Daele, y se extiende la dualidad que existe para ellas a los grupos cuánticos algebraicos. El capítulo 3, es un resumen de resultados (sin pruebas) concernientes a los productos tensoriales torcidos o entrelazamientos de [15], [20], [18] y [19] que serán utilizados en el capítulo 4. En este último capítulo presentamos los entrelazamientos con el álgebra k[y ±1]. Los principales resultados nuevos de esta tesis son 4.2.5 y 4.2.9 donde establecemos condiciones suficientes para obtener un entrelazamiento de este tipo a partir de uno con el álgebra k[y]. Además caracterizamos los casos separables, de nidos en el mismo capítulo. Finalmente definimos dos familias de álgebras de Hopf, ambas no conmutativas, de las cuales una es coconmutativa.
publishDate 2013
dc.date.accessioned.es_ES.fl_str_mv 2018-04-20T20:57:46Z
dc.date.available.es_ES.fl_str_mv 2018-04-20T20:57:46Z
dc.date.issued.fl_str_mv 2013
dc.type.none.fl_str_mv info:eu-repo/semantics/report
dc.type.other.none.fl_str_mv Reporte
format report
dc.identifier.uri.none.fl_str_mv http://repositorio.pucp.edu.pe/index/handle/123456789/123817
url http://repositorio.pucp.edu.pe/index/handle/123456789/123817
dc.language.iso.es_ES.fl_str_mv spa
language spa
dc.relation.ispartofseries.es_ES.fl_str_mv A;29
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú. Departamento de Ciencias
dc.publisher.country.none.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
bitstream.url.fl_str_mv https://repositorio.pucp.edu.pe/bitstreams/14cbea37-92ee-4035-870f-a90ec9ecf1b0/download
https://repositorio.pucp.edu.pe/bitstreams/db05f4fc-0cd9-4992-a82c-9fbed066ade8/download
https://repositorio.pucp.edu.pe/bitstreams/f4acc9c5-6118-49f6-a49e-ac6aac8e1398/download
https://repositorio.pucp.edu.pe/bitstreams/64e2e857-50e1-4063-a91b-c8b5031f8cc8/download
https://repositorio.pucp.edu.pe/bitstreams/2981c774-9cd6-4513-8ff4-85b418404270/download
bitstream.checksum.fl_str_mv ad0dbdb925653dab3f68a7d422eff39b
0832067e58664380ee03fbc8c87240e7
0d66db5f0b5d309190342fa60a13ccc4
c255645d021eb6dbafc7dbdf8f5133ea
3655808e5dd46167956d6870b0f43800
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835638348488638464
spelling Arce Flores, Jack Denne2018-04-20T20:57:46Z2018-04-20T20:57:46Z2013http://repositorio.pucp.edu.pe/index/handle/123456789/123817En el capítulo 1, desarrollamos los conceptos básicos y clásicos de la teoría de álgebras de Hopf, en la cual se muestra la dualidad en el caso nito dimensional, y ejemplos relacionados a la teoría de grupos. También tratamos una caracterización de las álgebras de Hopf debida a A. van Daele, que sirve de motivación únicamente para el capítulo siguiente. En el capítulo 2, desarrollamos la teoría de álgebras de Hopf de de multiplicadores desarrollada por A. van Daele, y se extiende la dualidad que existe para ellas a los grupos cuánticos algebraicos. El capítulo 3, es un resumen de resultados (sin pruebas) concernientes a los productos tensoriales torcidos o entrelazamientos de [15], [20], [18] y [19] que serán utilizados en el capítulo 4. En este último capítulo presentamos los entrelazamientos con el álgebra k[y ±1]. Los principales resultados nuevos de esta tesis son 4.2.5 y 4.2.9 donde establecemos condiciones suficientes para obtener un entrelazamiento de este tipo a partir de uno con el álgebra k[y]. Además caracterizamos los casos separables, de nidos en el mismo capítulo. Finalmente definimos dos familias de álgebras de Hopf, ambas no conmutativas, de las cuales una es coconmutativa.spaPontificia Universidad Católica del Perú. Departamento de CienciasPEA;29info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Álgebras de Hopfhttps://purl.org/pe-repo/ocde/ford#1.00.00Álgebras de Hopf, dualidad y productos torcidosinfo:eu-repo/semantics/reportReportereponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPTEXTjh-Reporte de Investigación-JArce.pdf.txtjh-Reporte de Investigación-JArce.pdf.txtExtracted texttext/plain142199https://repositorio.pucp.edu.pe/bitstreams/14cbea37-92ee-4035-870f-a90ec9ecf1b0/downloadad0dbdb925653dab3f68a7d422eff39bMD55falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81577https://repositorio.pucp.edu.pe/bitstreams/db05f4fc-0cd9-4992-a82c-9fbed066ade8/download0832067e58664380ee03fbc8c87240e7MD53falseAnonymousREADTHUMBNAILjh-Reporte de Investigación-JArce.pdf.jpgjh-Reporte de Investigación-JArce.pdf.jpgIM Thumbnailimage/jpeg24884https://repositorio.pucp.edu.pe/bitstreams/f4acc9c5-6118-49f6-a49e-ac6aac8e1398/download0d66db5f0b5d309190342fa60a13ccc4MD54falseAnonymousREADORIGINALjh-Reporte de Investigación-JArce.pdfjh-Reporte de Investigación-JArce.pdfTexto completoapplication/pdf1019652https://repositorio.pucp.edu.pe/bitstreams/64e2e857-50e1-4063-a91b-c8b5031f8cc8/downloadc255645d021eb6dbafc7dbdf8f5133eaMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.pucp.edu.pe/bitstreams/2981c774-9cd6-4513-8ff4-85b418404270/download3655808e5dd46167956d6870b0f43800MD52falseAnonymousREAD20.500.14657/123817oai:repositorio.pucp.edu.pe:20.500.14657/1238172024-10-05 12:43:39.484http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.peQmFqbyBsb3Mgc2lndWllbnRlcyB0w6lybWlub3MsIGF1dG9yaXpvIGVsIGRlcMOzc2l0byBkZSBtaSB0cmFiYWpvIGRlIGludmVzdGlnYWNpw7NuIGVuIGVsClJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgUFVDUApDb24gbGEgYXV0b3JpemFjacOzbiBkZSBkZXDDs3NpdG8gZGUgbWkgdHJhYmFqbyBkZSBpbnZlc3RpZ2FjacOzbiwgb3RvcmdvIGEgbGEgUG9udGlmaWNpYSBVbml2ZXJzaWRhZApDYXTDs2xpY2EgZGVsIFBlcsO6IHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZXByb2R1Y2lyLCBkaXN0cmlidWlyLCBjb211bmljYXIgYWwgcMO6YmxpY28sCnRyYW5zZm9ybWFyICjDum5pY2FtZW50ZSBtZWRpYW50ZSBzdSB0cmFkdWNjacOzbiBhIG90cm9zIGlkaW9tYXMpIHkgcG9uZXIgYQpkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvIG1pIHRyYWJham8gZGUgaW52ZXN0aWdhY2nDs24gKGluY2x1aWRvIGVsIHJlc3VtZW4pLCBlbiBmb3JtYXRvCmbDrXNpY28gbyBkaWdpdGFsLCBlbiBjdWFscXVpZXIgbWVkaW8sIGNvbm9jaWRvIHBvciBjb25vY2Vyc2UsIGEgdHJhdsOpcyBkZSBsb3MKZGl2ZXJzb3Mgc2VydmljaW9zIHByb3Zpc3RvcyBwb3IgbGEgVW5pdmVyc2lkYWQsIGNyZWFkb3MgbyBwb3IgY3JlYXJzZSwgdGFsZXMgY29tbyBlbApSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFBVQ1AsIGVudHJlIG90cm9zLCBlbiBlbCBQZXLDuiB5IGVuIGVsIGV4dHJhbmplcm8sIHBvciBlbAp0aWVtcG8geSB2ZWNlcyBxdWUgY29uc2lkZXJlIG5lY2VzYXJpYXMsIHkgbGlicmUgZGUgcmVtdW5lcmFjaW9uZXMuCkVuIHZpcnR1ZCBkZSBkaWNoYSBsaWNlbmNpYSwgbGEgUG9udGlmaWNpYSBVbml2ZXJzaWRhZCBDYXTDs2xpY2EgZGVsIFBlcsO6IHBvZHLDoQpyZXByb2R1Y2lyIG1pIHRyYWJham8gZGUgaW52ZXN0aWdhY2nDs24gZW4gY3VhbHF1aWVyIHRpcG8gZGUgc29wb3J0ZSB5IGVuIG3DoXMgZGUKdW4gZWplbXBsYXIsIHNpbiBtb2RpZmljYXIgc3UgY29udGVuaWRvLCBzb2xvIGNvbiBwcm9ww7NzaXRvcyBkZSBzZWd1cmlkYWQsIHJlc3BhbGRvCnkgcHJlc2VydmFjacOzbi4KRGVjbGFybyBxdWUgZWwgdHJhYmFqbyBkZSBpbnZlc3RpZ2FjacOzbiBlcyB1bmEgY3JlYWNpw7NuIGRlIG1pIGF1dG9yw61hIHkgZXhjbHVzaXZhIHRpdHVsYXJpZGFkLCBvCmNvYXV0b3LDrWEgY29uIHRpdHVsYXJpZGFkIGNvbXBhcnRpZGEsIHkgbWUgZW5jdWVudHJvIGZhY3VsdGFkbyBhIGNvbmNlZGVyIGxhIHByZXNlbnRlIGxpY2VuY2lhIHksCmFzaW1pc21vLCBnYXJhbnRpem8gcXVlIGRpY2hvIHRyYWJham8gZGUgaW52ZXN0aWdhY2nDs24gbm8gaW5mcmluZ2UgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2VyYXMKcGVyc29uYXMuIExhIFBvbnRpZmljaWEgVW5pdmVyc2lkYWQgQ2F0w7NsaWNhIGRlbCBQZXLDuiBjb25zaWduYXLDoSBlbCBub21icmUgZGVsL2xvcyBhdXRvci9lcyBkZWwKdHJhYmFqbyBkZSBpbnZlc3RpZ2FjacOzbiwgeSBubyBsZSBoYXLDoSBuaW5ndW5hIG1vZGlmaWNhY2nDs24gbcOhcyBxdWUgbGEgcGVybWl0aWRhIGVuIGxhIHByZXNlbnRlCmxpY2VuY2lhLgo=
score 13.92687
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).