Exportación Completada — 

Graphs and Equivariant Cohomology

Descripción del Articulo

Let X be a T-skeletal variety, that is, a complex algebraic variety where a complex torus T acts with only nitely many xed points and invariant curves. By a result of Goresky, Kottwtiz and MacPherson, the equivariant cohomology of X can be read off from the associated graph of xed points and invaria...

Descripción completa

Detalles Bibliográficos
Autores: Quispe, Ariana, Mendoza, Alexandra, Guzmán, Alejandra
Formato: documento de trabajo
Fecha de Publicación:2020
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/173454
Enlace del recurso:http://repositorio.pucp.edu.pe/index/handle/123456789/173454
Nivel de acceso:acceso abierto
Materia:Algebraic torus actions
Cellular decompositions
Equivariant cohomology
GKM theory
GKM graphs
http://purl.org/pe-repo/ocde/ford#5.09.01
Descripción
Sumario:Let X be a T-skeletal variety, that is, a complex algebraic variety where a complex torus T acts with only nitely many xed points and invariant curves. By a result of Goresky, Kottwtiz and MacPherson, the equivariant cohomology of X can be read off from the associated graph of xed points and invariant curves. The purpose of this paper is to compute explicitly and combinatorially the equivariant cohomology of certain projective toric surfaces and projective homogeneous spaces. In all these cases the equivariant cohomology is known to be a free module over a polynomial ring, and we provide explicit combinatorial and geometric bases for such modules. Furthermore, we exhibit an e cient algorithm to obtain such bases from a suitable order relation on the associated graph.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).