Graphs and Equivariant Cohomology
Descripción del Articulo
Let X be a T-skeletal variety, that is, a complex algebraic variety where a complex torus T acts with only nitely many xed points and invariant curves. By a result of Goresky, Kottwtiz and MacPherson, the equivariant cohomology of X can be read off from the associated graph of xed points and invaria...
Autores: | , , |
---|---|
Formato: | documento de trabajo |
Fecha de Publicación: | 2020 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/173454 |
Enlace del recurso: | http://repositorio.pucp.edu.pe/index/handle/123456789/173454 |
Nivel de acceso: | acceso abierto |
Materia: | Algebraic torus actions Cellular decompositions Equivariant cohomology GKM theory GKM graphs http://purl.org/pe-repo/ocde/ford#5.09.01 |
id |
RPUC_09b759c81c3a89e4e7a13d6d1dc9b106 |
---|---|
oai_identifier_str |
oai:repositorio.pucp.edu.pe:20.500.14657/173454 |
network_acronym_str |
RPUC |
network_name_str |
PUCP-Institucional |
repository_id_str |
2905 |
dc.title.es_ES.fl_str_mv |
Graphs and Equivariant Cohomology |
title |
Graphs and Equivariant Cohomology |
spellingShingle |
Graphs and Equivariant Cohomology Quispe, Ariana Algebraic torus actions Cellular decompositions Equivariant cohomology GKM theory GKM graphs http://purl.org/pe-repo/ocde/ford#5.09.01 |
title_short |
Graphs and Equivariant Cohomology |
title_full |
Graphs and Equivariant Cohomology |
title_fullStr |
Graphs and Equivariant Cohomology |
title_full_unstemmed |
Graphs and Equivariant Cohomology |
title_sort |
Graphs and Equivariant Cohomology |
author |
Quispe, Ariana |
author_facet |
Quispe, Ariana Mendoza, Alexandra Guzmán, Alejandra |
author_role |
author |
author2 |
Mendoza, Alexandra Guzmán, Alejandra |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Quispe, Ariana Mendoza, Alexandra Guzmán, Alejandra |
dc.subject.es_ES.fl_str_mv |
Algebraic torus actions Cellular decompositions Equivariant cohomology GKM theory GKM graphs |
topic |
Algebraic torus actions Cellular decompositions Equivariant cohomology GKM theory GKM graphs http://purl.org/pe-repo/ocde/ford#5.09.01 |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#5.09.01 |
description |
Let X be a T-skeletal variety, that is, a complex algebraic variety where a complex torus T acts with only nitely many xed points and invariant curves. By a result of Goresky, Kottwtiz and MacPherson, the equivariant cohomology of X can be read off from the associated graph of xed points and invariant curves. The purpose of this paper is to compute explicitly and combinatorially the equivariant cohomology of certain projective toric surfaces and projective homogeneous spaces. In all these cases the equivariant cohomology is known to be a free module over a polynomial ring, and we provide explicit combinatorial and geometric bases for such modules. Furthermore, we exhibit an e cient algorithm to obtain such bases from a suitable order relation on the associated graph. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-12-09T16:39:32Z |
dc.date.available.none.fl_str_mv |
2020-12-09T16:39:32Z |
dc.date.issued.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/workingPaper |
dc.type.other.none.fl_str_mv |
Documento de trabajo |
format |
workingPaper |
dc.identifier.uri.none.fl_str_mv |
http://repositorio.pucp.edu.pe/index/handle/123456789/173454 |
url |
http://repositorio.pucp.edu.pe/index/handle/123456789/173454 |
dc.language.iso.es_ES.fl_str_mv |
eng |
language |
eng |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_ES.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/pe/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/pe/ |
dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad del Perú. Vicerrectorado de Investigación. Dirección de Gestión de la Investigación |
dc.publisher.country.none.fl_str_mv |
PE |
dc.source.none.fl_str_mv |
reponame:PUCP-Institucional instname:Pontificia Universidad Católica del Perú instacron:PUCP |
instname_str |
Pontificia Universidad Católica del Perú |
instacron_str |
PUCP |
institution |
PUCP |
reponame_str |
PUCP-Institucional |
collection |
PUCP-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.pucp.edu.pe/bitstreams/031713a2-d5ac-49f4-b734-20e0fae8ad41/download https://repositorio.pucp.edu.pe/bitstreams/bef081c7-d468-4619-973a-f6b7118e2c77/download https://repositorio.pucp.edu.pe/bitstreams/8c9f999e-1fc1-48a5-a364-62e4f8375717/download https://repositorio.pucp.edu.pe/bitstreams/994f5dde-03ff-479e-9b72-2868a61b9e93/download |
bitstream.checksum.fl_str_mv |
338d5c7a202ff28aefec771716b97d32 8fc46f5e71650fd7adee84a69b9163c2 8a4605be74aa9ea9d79846c1fba20a33 e262946489934048df2bcf7784e47f6f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de la PUCP |
repository.mail.fl_str_mv |
repositorio@pucp.pe |
_version_ |
1835639749544509440 |
spelling |
Quispe, ArianaMendoza, AlexandraGuzmán, Alejandra2020-12-09T16:39:32Z2020-12-09T16:39:32Z2020http://repositorio.pucp.edu.pe/index/handle/123456789/173454Let X be a T-skeletal variety, that is, a complex algebraic variety where a complex torus T acts with only nitely many xed points and invariant curves. By a result of Goresky, Kottwtiz and MacPherson, the equivariant cohomology of X can be read off from the associated graph of xed points and invariant curves. The purpose of this paper is to compute explicitly and combinatorially the equivariant cohomology of certain projective toric surfaces and projective homogeneous spaces. In all these cases the equivariant cohomology is known to be a free module over a polynomial ring, and we provide explicit combinatorial and geometric bases for such modules. Furthermore, we exhibit an e cient algorithm to obtain such bases from a suitable order relation on the associated graph.engPontificia Universidad del Perú. Vicerrectorado de Investigación. Dirección de Gestión de la InvestigaciónPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/Algebraic torus actionsCellular decompositionsEquivariant cohomologyGKM theoryGKM graphshttp://purl.org/pe-repo/ocde/ford#5.09.01Graphs and Equivariant Cohomologyinfo:eu-repo/semantics/workingPaperDocumento de trabajoreponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPORIGINALTexto Académico final.pdfTexto Académico final.pdfTexto académicoapplication/pdf1087888https://repositorio.pucp.edu.pe/bitstreams/031713a2-d5ac-49f4-b734-20e0fae8ad41/download338d5c7a202ff28aefec771716b97d32MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.pucp.edu.pe/bitstreams/bef081c7-d468-4619-973a-f6b7118e2c77/download8fc46f5e71650fd7adee84a69b9163c2MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.pucp.edu.pe/bitstreams/8c9f999e-1fc1-48a5-a364-62e4f8375717/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTHUMBNAILTexto Académico final.pdf.jpgTexto Académico final.pdf.jpgIM Thumbnailimage/jpeg40365https://repositorio.pucp.edu.pe/bitstreams/994f5dde-03ff-479e-9b72-2868a61b9e93/downloade262946489934048df2bcf7784e47f6fMD54falseAnonymousREAD20.500.14657/173454oai:repositorio.pucp.edu.pe:20.500.14657/1734542024-10-04 15:29:01.041http://creativecommons.org/licenses/by-nc-sa/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.955983 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).