Graphs and Equivariant Cohomology

Descripción del Articulo

Let X be a T-skeletal variety, that is, a complex algebraic variety where a complex torus T acts with only nitely many xed points and invariant curves. By a result of Goresky, Kottwtiz and MacPherson, the equivariant cohomology of X can be read off from the associated graph of xed points and invaria...

Descripción completa

Detalles Bibliográficos
Autores: Quispe, Ariana, Mendoza, Alexandra, Guzmán, Alejandra
Formato: documento de trabajo
Fecha de Publicación:2020
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/173454
Enlace del recurso:http://repositorio.pucp.edu.pe/index/handle/123456789/173454
Nivel de acceso:acceso abierto
Materia:Algebraic torus actions
Cellular decompositions
Equivariant cohomology
GKM theory
GKM graphs
http://purl.org/pe-repo/ocde/ford#5.09.01
id RPUC_09b759c81c3a89e4e7a13d6d1dc9b106
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/173454
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
dc.title.es_ES.fl_str_mv Graphs and Equivariant Cohomology
title Graphs and Equivariant Cohomology
spellingShingle Graphs and Equivariant Cohomology
Quispe, Ariana
Algebraic torus actions
Cellular decompositions
Equivariant cohomology
GKM theory
GKM graphs
http://purl.org/pe-repo/ocde/ford#5.09.01
title_short Graphs and Equivariant Cohomology
title_full Graphs and Equivariant Cohomology
title_fullStr Graphs and Equivariant Cohomology
title_full_unstemmed Graphs and Equivariant Cohomology
title_sort Graphs and Equivariant Cohomology
author Quispe, Ariana
author_facet Quispe, Ariana
Mendoza, Alexandra
Guzmán, Alejandra
author_role author
author2 Mendoza, Alexandra
Guzmán, Alejandra
author2_role author
author
dc.contributor.author.fl_str_mv Quispe, Ariana
Mendoza, Alexandra
Guzmán, Alejandra
dc.subject.es_ES.fl_str_mv Algebraic torus actions
Cellular decompositions
Equivariant cohomology
GKM theory
GKM graphs
topic Algebraic torus actions
Cellular decompositions
Equivariant cohomology
GKM theory
GKM graphs
http://purl.org/pe-repo/ocde/ford#5.09.01
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#5.09.01
description Let X be a T-skeletal variety, that is, a complex algebraic variety where a complex torus T acts with only nitely many xed points and invariant curves. By a result of Goresky, Kottwtiz and MacPherson, the equivariant cohomology of X can be read off from the associated graph of xed points and invariant curves. The purpose of this paper is to compute explicitly and combinatorially the equivariant cohomology of certain projective toric surfaces and projective homogeneous spaces. In all these cases the equivariant cohomology is known to be a free module over a polynomial ring, and we provide explicit combinatorial and geometric bases for such modules. Furthermore, we exhibit an e cient algorithm to obtain such bases from a suitable order relation on the associated graph.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-12-09T16:39:32Z
dc.date.available.none.fl_str_mv 2020-12-09T16:39:32Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.other.none.fl_str_mv Documento de trabajo
format workingPaper
dc.identifier.uri.none.fl_str_mv http://repositorio.pucp.edu.pe/index/handle/123456789/173454
url http://repositorio.pucp.edu.pe/index/handle/123456789/173454
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_ES.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad del Perú. Vicerrectorado de Investigación. Dirección de Gestión de la Investigación
dc.publisher.country.none.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
bitstream.url.fl_str_mv https://repositorio.pucp.edu.pe/bitstreams/031713a2-d5ac-49f4-b734-20e0fae8ad41/download
https://repositorio.pucp.edu.pe/bitstreams/bef081c7-d468-4619-973a-f6b7118e2c77/download
https://repositorio.pucp.edu.pe/bitstreams/8c9f999e-1fc1-48a5-a364-62e4f8375717/download
https://repositorio.pucp.edu.pe/bitstreams/994f5dde-03ff-479e-9b72-2868a61b9e93/download
bitstream.checksum.fl_str_mv 338d5c7a202ff28aefec771716b97d32
8fc46f5e71650fd7adee84a69b9163c2
8a4605be74aa9ea9d79846c1fba20a33
e262946489934048df2bcf7784e47f6f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835639749544509440
spelling Quispe, ArianaMendoza, AlexandraGuzmán, Alejandra2020-12-09T16:39:32Z2020-12-09T16:39:32Z2020http://repositorio.pucp.edu.pe/index/handle/123456789/173454Let X be a T-skeletal variety, that is, a complex algebraic variety where a complex torus T acts with only nitely many xed points and invariant curves. By a result of Goresky, Kottwtiz and MacPherson, the equivariant cohomology of X can be read off from the associated graph of xed points and invariant curves. The purpose of this paper is to compute explicitly and combinatorially the equivariant cohomology of certain projective toric surfaces and projective homogeneous spaces. In all these cases the equivariant cohomology is known to be a free module over a polynomial ring, and we provide explicit combinatorial and geometric bases for such modules. Furthermore, we exhibit an e cient algorithm to obtain such bases from a suitable order relation on the associated graph.engPontificia Universidad del Perú. Vicerrectorado de Investigación. Dirección de Gestión de la InvestigaciónPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/Algebraic torus actionsCellular decompositionsEquivariant cohomologyGKM theoryGKM graphshttp://purl.org/pe-repo/ocde/ford#5.09.01Graphs and Equivariant Cohomologyinfo:eu-repo/semantics/workingPaperDocumento de trabajoreponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPORIGINALTexto Académico final.pdfTexto Académico final.pdfTexto académicoapplication/pdf1087888https://repositorio.pucp.edu.pe/bitstreams/031713a2-d5ac-49f4-b734-20e0fae8ad41/download338d5c7a202ff28aefec771716b97d32MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.pucp.edu.pe/bitstreams/bef081c7-d468-4619-973a-f6b7118e2c77/download8fc46f5e71650fd7adee84a69b9163c2MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.pucp.edu.pe/bitstreams/8c9f999e-1fc1-48a5-a364-62e4f8375717/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTHUMBNAILTexto Académico final.pdf.jpgTexto Académico final.pdf.jpgIM Thumbnailimage/jpeg40365https://repositorio.pucp.edu.pe/bitstreams/994f5dde-03ff-479e-9b72-2868a61b9e93/downloade262946489934048df2bcf7784e47f6fMD54falseAnonymousREAD20.500.14657/173454oai:repositorio.pucp.edu.pe:20.500.14657/1734542024-10-04 15:29:01.041http://creativecommons.org/licenses/by-nc-sa/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.955983
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).