Machine learning y realidad aumentada para el reconocimiento de recursos turísticos

Descripción del Articulo

Apurímac, a pesar de contar con gran cantidad de recursos turísticos, no ha podido di-fundirlos de manera adecuada, por lo que en esta investigación se pretende aplicar ma-chine learning y realidad aumentada para la detección y geolocalización de recursos tu-rísticos. Construyendo una aplicación móv...

Descripción completa

Detalles Bibliográficos
Autor: Renteria Ayquipa, Ronald Alberto
Formato: tesis doctoral
Fecha de Publicación:2021
Institución:Universidad Nacional Del Altiplano
Repositorio:UNAP-Institucional
Lenguaje:español
OAI Identifier:oai:https://repositorio.unap.edu.pe:20.500.14082/16669
Enlace del recurso:http://repositorio.unap.edu.pe/handle/20.500.14082/16669
Nivel de acceso:acceso abierto
Materia:Machine Learning y Realidad Aumentada
Ciencias de la Computación
https://purl.org/pe-repo/ocde/ford#1.02.01
Descripción
Sumario:Apurímac, a pesar de contar con gran cantidad de recursos turísticos, no ha podido di-fundirlos de manera adecuada, por lo que en esta investigación se pretende aplicar ma-chine learning y realidad aumentada para la detección y geolocalización de recursos tu-rísticos. Construyendo una aplicación móvil que integre todas estas tecnologías y permi-ta mejorar la experiencia del visitante en tiempo real. Para lograr el objetivo, se conside-raron 25 recursos turísticos de la región, 5 para el entrenamiento del modelo machine learning y 20 para la ubicación en tiempo real por geolocalización. En cuanto a machine learning, se entrenó con un dataset construido exclusivamente para esta investigación, mediante YOLOv3 sobre Darknet, a continuación, el modelo entrenado se incluyó en un servidor web con Flask sobre Python, que estará a la espera de imágenes. Además, se implementó una aplicación web para la gestión de recursos turísticos que serán mostra-dos al usuario final. En lo referente a realidad aumentada esta se implementó sobre una aplicación móvil la cual envía imágenes captadas por la cámara del móvil al detector, esta app móvil también permite mostrar puntos de interés cercanos basado en la geoloca-lización y orientación actual; ya sean reconocidos o geolocalizados, la app permite mos-trar la información del recurso turístico mediante realidad aumentada. Como resultados se logró una precisión del modelo en el reconocimiento de imágenes superior al 90%, se logró determinar los puntos de interés turístico cercanos al móvil basándose en su geopo-sicionamiento y orientación, finalmente, se logró definir una arquitectura que intercomu-nique estos tres sistemas que trabajan con tecnologías diferentes.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).