Predictive model for the early detection of students with high risk of academic dropout

Descripción del Articulo

The results of 4 predictive models, logistic regression, decision trees, KNN and a neural network are compared to predict the academic dropout of students at the National Intercultural University of the Amazon, applied to a dataset extracted from the system's database. of academic management of...

Descripción completa

Detalles Bibliográficos
Autor: Rivera Vergaray, Kevin
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad La Salle
Repositorio:Revistas - Universidad La Salle
Lenguaje:español
OAI Identifier:oai:ojs.revistas.ulasalle.edu.pe:article/40
Enlace del recurso:https://revistas.ulasalle.edu.pe/innosoft/article/view/40
https://doi.org/10.48168/innosoft.s6.a40
https://purl.org/42411/s6/a40
https://n2t.net/ark:/42411/s6/a40
Nivel de acceso:acceso abierto
Materia:Academic dropout
Dataset
Predictive model
Deserción académica
Modelo Predictivo
id REVUSALLE_557b5f9c8754619e8770bca22db96f81
oai_identifier_str oai:ojs.revistas.ulasalle.edu.pe:article/40
network_acronym_str REVUSALLE
network_name_str Revistas - Universidad La Salle
repository_id_str
spelling Predictive model for the early detection of students with high risk of academic dropoutModelo predictivo para la detección temprana de estudiantes con alto riesgo de deserción académicaRivera Vergaray, KevinAcademic dropoutDatasetPredictive modelDeserción académicaDatasetModelo PredictivoThe results of 4 predictive models, logistic regression, decision trees, KNN and a neural network are compared to predict the academic dropout of students at the National Intercultural University of the Amazon, applied to a dataset extracted from the system's database. of academic management of the university, which contains socioeconomic and academic performance data which were processed and formatted using onehotencoding techniques in order to apply the predictive models already mentioned. For data processing and formatting, Transac Sql queries were used and the application of predictive models was done through Knime Software and using Python through Google Colab. The results obtained by applying 4 predictive models are very good since they all exceeded 80% of Accuracy, which guarantees that they can be put into production for the benefit of the university and thus can make better decisions when addressing academic dropout. . It is concluded that applying a predictive model in universities for the early detection of students with high risk of academic dropout is viable and very beneficial so that universities, through their academic managers, can apply more focused strategies to reduce their academic dropout rates.Se comparan los resultados de 4 modelos predictivos, de regresión logística, árboles de decisión, KNN y una red neuronal para predecir la deserción académica de estudiantes en la Universidad Nacional Intercultural de la Amazonía, aplicado a un dataset extraído de la base de datos del sistema de gestión académica de la universidad, que contiene datos socioeconómicos y de rendimiento académico los cuales fueron procesados y formateados utilizando técnicas de onehotencoding para así poder  aplicar los modelos predictivos ya mencionados. Para el procesamiento y formateo de datos se utilizó consultas Transac Sql y la aplicación de los modelos predictivos se hizo a través del Software Knime y utilizando Python a través de Google Colab. Los resultados obtenidos al aplicar 4 modelos predictivos son muy buenos ya que todos superaron el 80% de Accuracy, lo cual garantiza que puedan ser puestos en producción para el beneficio de la universidad y así pueda tomar mejores decisiones a la hora de abordar la deserción académica. Se concluye que aplicar un modelo predictivo en las universidades para la detección temprana de estudiantes con alto riesgo de deserción académica es viable y muy beneficioso para que las universidades a través de sus gestores académicos puedan aplicar estrategias mas focalizadas para reducir sus índices de deserción académica.Universidad La Salle2021-09-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionShort paperstextArtículos cortosapplication/pdftext/htmlhttps://revistas.ulasalle.edu.pe/innosoft/article/view/40https://doi.org/10.48168/innosoft.s6.a40https://purl.org/42411/s6/a40https://n2t.net/ark:/42411/s6/a40Innovation and Software; Vol 2 No 2 (2021): September - February; 6-13Innovación y Software; Vol. 2 Núm. 2 (2021): Septiembre - Febrero; 6-132708-09352708-0927https://doi.org/10.48168/innosoft.s6https://purl.org/42411/s6https://n2t.net/ark:/42411/s6reponame:Revistas - Universidad La Salleinstname:Universidad La Salleinstacron:USALLEspahttps://revistas.ulasalle.edu.pe/innosoft/article/view/40/37https://revistas.ulasalle.edu.pe/innosoft/article/view/40/38https://purl.org/42411/s6/a40/g37https://purl.org/42411/s6/a40/g38https://n2t.net/ark:/42411/s6/a40/g37https://n2t.net/ark:/42411/s6/a40/g3820212021Derechos de autor 2021 Innovación y Softwarehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.ulasalle.edu.pe:article/402023-05-24T20:32:13Z
dc.title.none.fl_str_mv Predictive model for the early detection of students with high risk of academic dropout
Modelo predictivo para la detección temprana de estudiantes con alto riesgo de deserción académica
title Predictive model for the early detection of students with high risk of academic dropout
spellingShingle Predictive model for the early detection of students with high risk of academic dropout
Rivera Vergaray, Kevin
Academic dropout
Dataset
Predictive model
Deserción académica
Dataset
Modelo Predictivo
title_short Predictive model for the early detection of students with high risk of academic dropout
title_full Predictive model for the early detection of students with high risk of academic dropout
title_fullStr Predictive model for the early detection of students with high risk of academic dropout
title_full_unstemmed Predictive model for the early detection of students with high risk of academic dropout
title_sort Predictive model for the early detection of students with high risk of academic dropout
dc.creator.none.fl_str_mv Rivera Vergaray, Kevin
author Rivera Vergaray, Kevin
author_facet Rivera Vergaray, Kevin
author_role author
dc.subject.none.fl_str_mv Academic dropout
Dataset
Predictive model
Deserción académica
Dataset
Modelo Predictivo
topic Academic dropout
Dataset
Predictive model
Deserción académica
Dataset
Modelo Predictivo
description The results of 4 predictive models, logistic regression, decision trees, KNN and a neural network are compared to predict the academic dropout of students at the National Intercultural University of the Amazon, applied to a dataset extracted from the system's database. of academic management of the university, which contains socioeconomic and academic performance data which were processed and formatted using onehotencoding techniques in order to apply the predictive models already mentioned. For data processing and formatting, Transac Sql queries were used and the application of predictive models was done through Knime Software and using Python through Google Colab. The results obtained by applying 4 predictive models are very good since they all exceeded 80% of Accuracy, which guarantees that they can be put into production for the benefit of the university and thus can make better decisions when addressing academic dropout. . It is concluded that applying a predictive model in universities for the early detection of students with high risk of academic dropout is viable and very beneficial so that universities, through their academic managers, can apply more focused strategies to reduce their academic dropout rates.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Short papers
text
Artículos cortos
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/40
https://doi.org/10.48168/innosoft.s6.a40
https://purl.org/42411/s6/a40
https://n2t.net/ark:/42411/s6/a40
url https://revistas.ulasalle.edu.pe/innosoft/article/view/40
https://doi.org/10.48168/innosoft.s6.a40
https://purl.org/42411/s6/a40
https://n2t.net/ark:/42411/s6/a40
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/40/37
https://revistas.ulasalle.edu.pe/innosoft/article/view/40/38
https://purl.org/42411/s6/a40/g37
https://purl.org/42411/s6/a40/g38
https://n2t.net/ark:/42411/s6/a40/g37
https://n2t.net/ark:/42411/s6/a40/g38
dc.rights.none.fl_str_mv Derechos de autor 2021 Innovación y Software
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2021 Innovación y Software
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.coverage.none.fl_str_mv 2021
2021
dc.publisher.none.fl_str_mv Universidad La Salle
publisher.none.fl_str_mv Universidad La Salle
dc.source.none.fl_str_mv Innovation and Software; Vol 2 No 2 (2021): September - February; 6-13
Innovación y Software; Vol. 2 Núm. 2 (2021): Septiembre - Febrero; 6-13
2708-0935
2708-0927
https://doi.org/10.48168/innosoft.s6
https://purl.org/42411/s6
https://n2t.net/ark:/42411/s6
reponame:Revistas - Universidad La Salle
instname:Universidad La Salle
instacron:USALLE
instname_str Universidad La Salle
instacron_str USALLE
institution USALLE
reponame_str Revistas - Universidad La Salle
collection Revistas - Universidad La Salle
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1842089922304933888
score 12.84232
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).