Predictive model for the early detection of students with high risk of academic dropout
Descripción del Articulo
The results of 4 predictive models, logistic regression, decision trees, KNN and a neural network are compared to predict the academic dropout of students at the National Intercultural University of the Amazon, applied to a dataset extracted from the system's database. of academic management of...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Universidad La Salle |
Repositorio: | Revistas - Universidad La Salle |
Lenguaje: | español |
OAI Identifier: | oai:ojs.revistas.ulasalle.edu.pe:article/40 |
Enlace del recurso: | https://revistas.ulasalle.edu.pe/innosoft/article/view/40 https://doi.org/10.48168/innosoft.s6.a40 https://purl.org/42411/s6/a40 https://n2t.net/ark:/42411/s6/a40 |
Nivel de acceso: | acceso abierto |
Materia: | Academic dropout Dataset Predictive model Deserción académica Modelo Predictivo |
id |
REVUSALLE_557b5f9c8754619e8770bca22db96f81 |
---|---|
oai_identifier_str |
oai:ojs.revistas.ulasalle.edu.pe:article/40 |
network_acronym_str |
REVUSALLE |
network_name_str |
Revistas - Universidad La Salle |
repository_id_str |
|
spelling |
Predictive model for the early detection of students with high risk of academic dropoutModelo predictivo para la detección temprana de estudiantes con alto riesgo de deserción académicaRivera Vergaray, KevinAcademic dropoutDatasetPredictive modelDeserción académicaDatasetModelo PredictivoThe results of 4 predictive models, logistic regression, decision trees, KNN and a neural network are compared to predict the academic dropout of students at the National Intercultural University of the Amazon, applied to a dataset extracted from the system's database. of academic management of the university, which contains socioeconomic and academic performance data which were processed and formatted using onehotencoding techniques in order to apply the predictive models already mentioned. For data processing and formatting, Transac Sql queries were used and the application of predictive models was done through Knime Software and using Python through Google Colab. The results obtained by applying 4 predictive models are very good since they all exceeded 80% of Accuracy, which guarantees that they can be put into production for the benefit of the university and thus can make better decisions when addressing academic dropout. . It is concluded that applying a predictive model in universities for the early detection of students with high risk of academic dropout is viable and very beneficial so that universities, through their academic managers, can apply more focused strategies to reduce their academic dropout rates.Se comparan los resultados de 4 modelos predictivos, de regresión logística, árboles de decisión, KNN y una red neuronal para predecir la deserción académica de estudiantes en la Universidad Nacional Intercultural de la Amazonía, aplicado a un dataset extraído de la base de datos del sistema de gestión académica de la universidad, que contiene datos socioeconómicos y de rendimiento académico los cuales fueron procesados y formateados utilizando técnicas de onehotencoding para así poder aplicar los modelos predictivos ya mencionados. Para el procesamiento y formateo de datos se utilizó consultas Transac Sql y la aplicación de los modelos predictivos se hizo a través del Software Knime y utilizando Python a través de Google Colab. Los resultados obtenidos al aplicar 4 modelos predictivos son muy buenos ya que todos superaron el 80% de Accuracy, lo cual garantiza que puedan ser puestos en producción para el beneficio de la universidad y así pueda tomar mejores decisiones a la hora de abordar la deserción académica. Se concluye que aplicar un modelo predictivo en las universidades para la detección temprana de estudiantes con alto riesgo de deserción académica es viable y muy beneficioso para que las universidades a través de sus gestores académicos puedan aplicar estrategias mas focalizadas para reducir sus índices de deserción académica.Universidad La Salle2021-09-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionShort paperstextArtículos cortosapplication/pdftext/htmlhttps://revistas.ulasalle.edu.pe/innosoft/article/view/40https://doi.org/10.48168/innosoft.s6.a40https://purl.org/42411/s6/a40https://n2t.net/ark:/42411/s6/a40Innovation and Software; Vol 2 No 2 (2021): September - February; 6-13Innovación y Software; Vol. 2 Núm. 2 (2021): Septiembre - Febrero; 6-132708-09352708-0927https://doi.org/10.48168/innosoft.s6https://purl.org/42411/s6https://n2t.net/ark:/42411/s6reponame:Revistas - Universidad La Salleinstname:Universidad La Salleinstacron:USALLEspahttps://revistas.ulasalle.edu.pe/innosoft/article/view/40/37https://revistas.ulasalle.edu.pe/innosoft/article/view/40/38https://purl.org/42411/s6/a40/g37https://purl.org/42411/s6/a40/g38https://n2t.net/ark:/42411/s6/a40/g37https://n2t.net/ark:/42411/s6/a40/g3820212021Derechos de autor 2021 Innovación y Softwarehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.ulasalle.edu.pe:article/402023-05-24T20:32:13Z |
dc.title.none.fl_str_mv |
Predictive model for the early detection of students with high risk of academic dropout Modelo predictivo para la detección temprana de estudiantes con alto riesgo de deserción académica |
title |
Predictive model for the early detection of students with high risk of academic dropout |
spellingShingle |
Predictive model for the early detection of students with high risk of academic dropout Rivera Vergaray, Kevin Academic dropout Dataset Predictive model Deserción académica Dataset Modelo Predictivo |
title_short |
Predictive model for the early detection of students with high risk of academic dropout |
title_full |
Predictive model for the early detection of students with high risk of academic dropout |
title_fullStr |
Predictive model for the early detection of students with high risk of academic dropout |
title_full_unstemmed |
Predictive model for the early detection of students with high risk of academic dropout |
title_sort |
Predictive model for the early detection of students with high risk of academic dropout |
dc.creator.none.fl_str_mv |
Rivera Vergaray, Kevin |
author |
Rivera Vergaray, Kevin |
author_facet |
Rivera Vergaray, Kevin |
author_role |
author |
dc.subject.none.fl_str_mv |
Academic dropout Dataset Predictive model Deserción académica Dataset Modelo Predictivo |
topic |
Academic dropout Dataset Predictive model Deserción académica Dataset Modelo Predictivo |
description |
The results of 4 predictive models, logistic regression, decision trees, KNN and a neural network are compared to predict the academic dropout of students at the National Intercultural University of the Amazon, applied to a dataset extracted from the system's database. of academic management of the university, which contains socioeconomic and academic performance data which were processed and formatted using onehotencoding techniques in order to apply the predictive models already mentioned. For data processing and formatting, Transac Sql queries were used and the application of predictive models was done through Knime Software and using Python through Google Colab. The results obtained by applying 4 predictive models are very good since they all exceeded 80% of Accuracy, which guarantees that they can be put into production for the benefit of the university and thus can make better decisions when addressing academic dropout. . It is concluded that applying a predictive model in universities for the early detection of students with high risk of academic dropout is viable and very beneficial so that universities, through their academic managers, can apply more focused strategies to reduce their academic dropout rates. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-30 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Short papers text Artículos cortos |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.ulasalle.edu.pe/innosoft/article/view/40 https://doi.org/10.48168/innosoft.s6.a40 https://purl.org/42411/s6/a40 https://n2t.net/ark:/42411/s6/a40 |
url |
https://revistas.ulasalle.edu.pe/innosoft/article/view/40 https://doi.org/10.48168/innosoft.s6.a40 https://purl.org/42411/s6/a40 https://n2t.net/ark:/42411/s6/a40 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.ulasalle.edu.pe/innosoft/article/view/40/37 https://revistas.ulasalle.edu.pe/innosoft/article/view/40/38 https://purl.org/42411/s6/a40/g37 https://purl.org/42411/s6/a40/g38 https://n2t.net/ark:/42411/s6/a40/g37 https://n2t.net/ark:/42411/s6/a40/g38 |
dc.rights.none.fl_str_mv |
Derechos de autor 2021 Innovación y Software https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2021 Innovación y Software https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html |
dc.coverage.none.fl_str_mv |
2021 2021 |
dc.publisher.none.fl_str_mv |
Universidad La Salle |
publisher.none.fl_str_mv |
Universidad La Salle |
dc.source.none.fl_str_mv |
Innovation and Software; Vol 2 No 2 (2021): September - February; 6-13 Innovación y Software; Vol. 2 Núm. 2 (2021): Septiembre - Febrero; 6-13 2708-0935 2708-0927 https://doi.org/10.48168/innosoft.s6 https://purl.org/42411/s6 https://n2t.net/ark:/42411/s6 reponame:Revistas - Universidad La Salle instname:Universidad La Salle instacron:USALLE |
instname_str |
Universidad La Salle |
instacron_str |
USALLE |
institution |
USALLE |
reponame_str |
Revistas - Universidad La Salle |
collection |
Revistas - Universidad La Salle |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1842089922304933888 |
score |
12.84232 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).