Español Español: English

Descripción del Articulo

Objectives: To propose the use of artificial intelligence to partially reduce uncertainty when investing in the stock market. To demonstrate, through the use of fuzzy logic, that with this proposal it is possible to obtain positive results and high profitability. Methods: The research approach is qu...

Descripción completa

Detalles Bibliográficos
Autor: Talledo, David
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Ricardo Palma
Repositorio:Revistas - Universidad Ricardo Palma
Lenguaje:español
OAI Identifier:oai:oai.revistas.urp.edu.pe:article/5167
Enlace del recurso:http://revistas.urp.edu.pe/index.php/Global_Business/article/view/5167
Nivel de acceso:acceso abierto
Materia:Español
Ciencia de los Datos
Lógica Difusa
Bolsa de Valores
Inversión
Descripción
Sumario:Objectives: To propose the use of artificial intelligence to partially reduce uncertainty when investing in the stock market. To demonstrate, through the use of fuzzy logic, that with this proposal it is possible to obtain positive results and high profitability. Methods: The research approach is quantitative experimental and quali-quantitative descriptive; micro and macroeconomic information is taken to experiment with a stock of the Lima Stock Exchange. Quali-quantitative results from previous research are analyzed. Results: It is demonstrated that it is possible to use artificial intelligence to make better investments in the Stock Exchange. In addition, high profitability is obtained in the experiment. Conclusions: The use of artificial intelligence and, specifically, a fuzzy logic algorithm, is effective in conveying knowledge, experience and reducing uncertainty when investing in different financial markets. However, there is still much to be developed in this area and no algorithm should be considered infallible. Keywords: Data Science; Fuzzy Logic; Stock Exchange; Investment.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).