Evaluation of the discriminative capacity of anthropometric indicators and their predictive relationship of diabetes in health workers of the University Hospital of Guayaquil - Ecuador: Evaluación de la capacidad discriminativa de los indicadores antropométricos y su relación predictiva de diabetes en trabajadores de salud del Hospital Universitario de Guayaquil - Ecuador

Descripción del Articulo

Objective: To evaluate the discriminative ability to predict diabetes with anthropometric and biochemical indicators and medical history. Methods: The sampling carried out was census and the sample consisted of 104 workers. A longitudinal study was carried out to evaluate the discriminative ability...

Descripción completa

Detalles Bibliográficos
Autores: Gordillo Cortaza, Janet del Rocio, Feraud Ibarra, Fatima, Encalada Calero, Franklin, Roque Quezada, Juan Carlos, Quintana Columbus, Rosa, Plaza Plaza, Jennifer, Falquez Garcia, Cinthya, Meza Solorzano, Dagmar, Castro Mattos, Miguel
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Ricardo Palma
Repositorio:Revistas - Universidad Ricardo Palma
Lenguaje:español
inglés
OAI Identifier:oai:oai.revistas.urp.edu.pe:article/3758
Enlace del recurso:http://revistas.urp.edu.pe/index.php/RFMH/article/view/3758
Nivel de acceso:acceso abierto
Materia:Riesgo
Predicción
Diabetes Mellitus
Risk
Forecasting
Descripción
Sumario:Objective: To evaluate the discriminative ability to predict diabetes with anthropometric and biochemical indicators and medical history. Methods: The sampling carried out was census and the sample consisted of 104 workers. A longitudinal study was carried out to evaluate the discriminative ability to predict diabetes with the anthropometric, biochemical, and antecedent indicators, using two models, the analysis of the ROC curves and binary logistic regression. Results: By analyzing the ROC curves, the abdominal circumference obtained greater predictive discriminative power (AUC = 0.747; p <0.001; CI: 0.624-0.870), compared to glycemia (AUC=0.749; p <0.001; CI: 0.645-0.852) and the waist-height index (AUC=0.737; p=0.001; CI: 0.638-0.836). Personal medical history is included in the logistic regression equation P(Y=1)=(1+e0,693+1,897APP)-1 to predict the risk of developing diabetes in the future. Conclusions: The abdominal circumference obtained the highest discriminative power, followed by the pathological history.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).