Factorial methods in the analysis of spatial data. An application to the 2012 agricultural census data for the characterization of the provinces of Peru

Descripción del Articulo

The Peruvian provinces were tipified by factorial methods with incorporating geo-referenced data with information from the 2012 National Agricultural Census. Were determined three indicators : Intensity of agricultural activity, commercialization of agricultural production, and use of water sources...

Descripción completa

Detalles Bibliográficos
Autores: Cambillo Moyano, Emma Norma, Agüero Palacios, Ysela Dominga, Alvarez Rivas, María del Pilar, Riojas Cañari, Alicia Cirila
Formato: artículo
Fecha de Publicación:2016
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/12672
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/12672
Nivel de acceso:acceso abierto
Materia:Exploratory spatial data analysis
Moran index
factorial methods
spatial analysis
agricultural census.
Análisis exploratorio de datos espaciales
índice de Moran
métodos factoriales
análisis espacial
censo agropecuario.
id REVUNMSM_f2d72ea5c4505defcf5274978016fa9b
oai_identifier_str oai:ojs.csi.unmsm:article/12672
network_acronym_str REVUNMSM
network_name_str Revistas - Universidad Nacional Mayor de San Marcos
repository_id_str
spelling Factorial methods in the analysis of spatial data. An application to the 2012 agricultural census data for the characterization of the provinces of PeruMétodos Factoriales en el Análisis de Datos Espaciales. Una Aplicación a los Datos del Censo Agropecuario 2012 para la Caracterización de las Provincias del PerúCambillo Moyano, Emma NormaAgüero Palacios, Ysela DomingaAlvarez Rivas, María del PilarRiojas Cañari, Alicia CirilaExploratory spatial data analysisMoran indexfactorial methodsspatial analysisagricultural census.Análisis exploratorio de datos espacialesíndice de Moranmétodos factorialesanálisis espacialcenso agropecuario.The Peruvian provinces were tipified by factorial methods with incorporating geo-referenced data with information from the 2012 National Agricultural Census. Were determined three indicators : Intensity of agricultural activity, commercialization of agricultural production, and use of water sources for irrigation; The use of the Moran Index helped identify provinces with similar agricultural characteristics. The results could be used to route some objectives of the strategic plan of the agricultural sector, and monitor policies of institutional development in the sector. The informatión also could be useful for designing development plans that meet the needs of the agricultural sector and to have a clear idea of the agricultural characteristics of all the provinces of Peru, with the object to orient the investment in the country.Las provincias peruanas fueron tipificadas por métodos factoriales con la incorporación de datos georreferenciados con información del Censo Nacional Agropecuario de 2012. Se determinaron tres indicadores: La intensidad de la actividad agrícola, la comercialización de la producción agrícola, y el uso de fuentes de agua para el riego; El uso del Índice de Moran ayudó a identificar las provincias con características agrícolas similares. Los resultados podrían ser utilizados para encaminar algunos objetivos del plan estratégico del sector agrícola, y supervisar las políticas de desarrollo institucional en el sector. La información también podría ser útil para el diseño de planes de desarrollo que respondan a las necesidades del sector agrícola y para tener una idea clara de las características agrícolas de todas las provincias del Perú, con el objeto de orientar la inversión en el paísUniversidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas2016-11-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/1267210.15381/pes.v19i2.12672Pesquimat; Vol. 19 No. 2 (2016)Pesquimat; Vol. 19 Núm. 2 (2016)1609-84391560-912X10.15381/pes.v19i2reponame:Revistas - Universidad Nacional Mayor de San Marcosinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/12672/11324Derechos de autor 2016 Emma Norma Cambillo Moyano, Ysela Dominga Agüero Palacios, María del Pilar Alvarez Rivas, Alicia Cirila Riojas Cañarihttps://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessoai:ojs.csi.unmsm:article/126722016-11-23T13:48:02Z
dc.title.none.fl_str_mv Factorial methods in the analysis of spatial data. An application to the 2012 agricultural census data for the characterization of the provinces of Peru
Métodos Factoriales en el Análisis de Datos Espaciales. Una Aplicación a los Datos del Censo Agropecuario 2012 para la Caracterización de las Provincias del Perú
title Factorial methods in the analysis of spatial data. An application to the 2012 agricultural census data for the characterization of the provinces of Peru
spellingShingle Factorial methods in the analysis of spatial data. An application to the 2012 agricultural census data for the characterization of the provinces of Peru
Cambillo Moyano, Emma Norma
Exploratory spatial data analysis
Moran index
factorial methods
spatial analysis
agricultural census.
Análisis exploratorio de datos espaciales
índice de Moran
métodos factoriales
análisis espacial
censo agropecuario.
title_short Factorial methods in the analysis of spatial data. An application to the 2012 agricultural census data for the characterization of the provinces of Peru
title_full Factorial methods in the analysis of spatial data. An application to the 2012 agricultural census data for the characterization of the provinces of Peru
title_fullStr Factorial methods in the analysis of spatial data. An application to the 2012 agricultural census data for the characterization of the provinces of Peru
title_full_unstemmed Factorial methods in the analysis of spatial data. An application to the 2012 agricultural census data for the characterization of the provinces of Peru
title_sort Factorial methods in the analysis of spatial data. An application to the 2012 agricultural census data for the characterization of the provinces of Peru
dc.creator.none.fl_str_mv Cambillo Moyano, Emma Norma
Agüero Palacios, Ysela Dominga
Alvarez Rivas, María del Pilar
Riojas Cañari, Alicia Cirila
author Cambillo Moyano, Emma Norma
author_facet Cambillo Moyano, Emma Norma
Agüero Palacios, Ysela Dominga
Alvarez Rivas, María del Pilar
Riojas Cañari, Alicia Cirila
author_role author
author2 Agüero Palacios, Ysela Dominga
Alvarez Rivas, María del Pilar
Riojas Cañari, Alicia Cirila
author2_role author
author
author
dc.subject.none.fl_str_mv Exploratory spatial data analysis
Moran index
factorial methods
spatial analysis
agricultural census.
Análisis exploratorio de datos espaciales
índice de Moran
métodos factoriales
análisis espacial
censo agropecuario.
topic Exploratory spatial data analysis
Moran index
factorial methods
spatial analysis
agricultural census.
Análisis exploratorio de datos espaciales
índice de Moran
métodos factoriales
análisis espacial
censo agropecuario.
description The Peruvian provinces were tipified by factorial methods with incorporating geo-referenced data with information from the 2012 National Agricultural Census. Were determined three indicators : Intensity of agricultural activity, commercialization of agricultural production, and use of water sources for irrigation; The use of the Moran Index helped identify provinces with similar agricultural characteristics. The results could be used to route some objectives of the strategic plan of the agricultural sector, and monitor policies of institutional development in the sector. The informatión also could be useful for designing development plans that meet the needs of the agricultural sector and to have a clear idea of the agricultural characteristics of all the provinces of Peru, with the object to orient the investment in the country.
publishDate 2016
dc.date.none.fl_str_mv 2016-11-18
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/12672
10.15381/pes.v19i2.12672
url https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/12672
identifier_str_mv 10.15381/pes.v19i2.12672
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/12672/11324
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas
publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas
dc.source.none.fl_str_mv Pesquimat; Vol. 19 No. 2 (2016)
Pesquimat; Vol. 19 Núm. 2 (2016)
1609-8439
1560-912X
10.15381/pes.v19i2
reponame:Revistas - Universidad Nacional Mayor de San Marcos
instname:Universidad Nacional Mayor de San Marcos
instacron:UNMSM
instname_str Universidad Nacional Mayor de San Marcos
instacron_str UNMSM
institution UNMSM
reponame_str Revistas - Universidad Nacional Mayor de San Marcos
collection Revistas - Universidad Nacional Mayor de San Marcos
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1795238281013624832
score 13.754011
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).