A Bayesian Approach to Heterocedastic Models of Time Series and its Application in the Volatility of Financial Assets
Descripción del Articulo
In this work, the modeling of the volatility of financial assets is studied using a Bayesian approach. DCC - GARCH models are used, for the errors of these models asymmetric and leptokurtic probability distributions are considered, which are parameterized according to the asymmetry and the weight of...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Universidad Nacional Mayor de San Marcos |
Repositorio: | Revistas - Universidad Nacional Mayor de San Marcos |
Lenguaje: | español |
OAI Identifier: | oai:ojs.csi.unmsm:article/21152 |
Enlace del recurso: | https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/21152 |
Nivel de acceso: | acceso abierto |
Materia: | DCC - GARCH heteroscedastic models MCMC methodology Modelos heterocedasticos DCC - GARCH metodología MCMC |
id |
REVUNMSM_5de5d225dee52347213ae70deca69e78 |
---|---|
oai_identifier_str |
oai:ojs.csi.unmsm:article/21152 |
network_acronym_str |
REVUNMSM |
network_name_str |
Revistas - Universidad Nacional Mayor de San Marcos |
repository_id_str |
|
spelling |
A Bayesian Approach to Heterocedastic Models of Time Series and its Application in the Volatility of Financial AssetsUn Enfoque Bayesiano en Modelos Heterocedásticos de Series de Tiempo y su Aplicación en la Volatilidad de Activos FinancierosFlores Montoya, Edwin AnteroBravo Quiroz, AntonioFlores Montoya, Edwin AnteroBravo Quiroz, AntonioDCC - GARCH heteroscedastic modelsMCMC methodologyModelos heterocedasticos DCC - GARCHmetodología MCMCIn this work, the modeling of the volatility of financial assets is studied using a Bayesian approach. DCC - GARCH models are used, for the errors of these models asymmetric and leptokurtic probability distributions are considered, which are parameterized according to the asymmetry and the weight of the tails, therefore these parameters are also estimated. The estimation of the model parameters was performed using the MCMC methodology Metropolis - Hastings random walk algorithm using the software R package bayesDccGarch, daily data from 04/01/2015 - 01/31/2020 of the stock indices of: Frankfurt are considered (DAX), Tokyo (NIKKEI225), Paris (CAC40), and Lima (BVL). The Bayesian approach to estimating the model parameters facilitates interpretation and provides the ability to insert a priori information for the parameters.En este trabajo, se estudia la modelación de la volatilidad de activos financieros mediante un enfoque bayesiano. Se utilizan modelos DCC - GARCH, para los errores de estos modelos se consideran distribuciones de probabilidad asimétricas y leptocúrticas, las cuales se parametrizan en función de la asimetría y el peso de las colas, por lo que también se estiman estos parámetros. La estimación de los parámetros del modelo se realizó mediante la metodología MCMC algoritmo Metropolis - Hastings caminata aleatoria haciendo uso del software R paquete bayesDccGarch, se consideran datos diarios del 1/04/2015 - 31/01/2020 de los índices bursátiles de: Frankfurt (DAX), Tokio (NIKKEI225), París (CAC40), y de Lima (BVL). El enfoque bayesiano para la estimación de los parámetros del modelo facilita la interpretación y brinda la posibilidad de insertar información a priori para los parámetros.Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas2021-12-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/2115210.15381/pesquimat.v24i2.21152Pesquimat; Vol. 24 No. 2 (2021); 1-12Pesquimat; Vol. 24 Núm. 2 (2021); 1-121609-84391560-912Xreponame:Revistas - Universidad Nacional Mayor de San Marcosinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/21152/17587Derechos de autor 2021 Edwin Antero Flores Montoya, Antonio Bravo Quirozhttp://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessoai:ojs.csi.unmsm:article/211522021-12-30T12:10:29Z |
dc.title.none.fl_str_mv |
A Bayesian Approach to Heterocedastic Models of Time Series and its Application in the Volatility of Financial Assets Un Enfoque Bayesiano en Modelos Heterocedásticos de Series de Tiempo y su Aplicación en la Volatilidad de Activos Financieros |
title |
A Bayesian Approach to Heterocedastic Models of Time Series and its Application in the Volatility of Financial Assets |
spellingShingle |
A Bayesian Approach to Heterocedastic Models of Time Series and its Application in the Volatility of Financial Assets Flores Montoya, Edwin Antero DCC - GARCH heteroscedastic models MCMC methodology Modelos heterocedasticos DCC - GARCH metodología MCMC |
title_short |
A Bayesian Approach to Heterocedastic Models of Time Series and its Application in the Volatility of Financial Assets |
title_full |
A Bayesian Approach to Heterocedastic Models of Time Series and its Application in the Volatility of Financial Assets |
title_fullStr |
A Bayesian Approach to Heterocedastic Models of Time Series and its Application in the Volatility of Financial Assets |
title_full_unstemmed |
A Bayesian Approach to Heterocedastic Models of Time Series and its Application in the Volatility of Financial Assets |
title_sort |
A Bayesian Approach to Heterocedastic Models of Time Series and its Application in the Volatility of Financial Assets |
dc.creator.none.fl_str_mv |
Flores Montoya, Edwin Antero Bravo Quiroz, Antonio Flores Montoya, Edwin Antero Bravo Quiroz, Antonio |
author |
Flores Montoya, Edwin Antero |
author_facet |
Flores Montoya, Edwin Antero Bravo Quiroz, Antonio |
author_role |
author |
author2 |
Bravo Quiroz, Antonio |
author2_role |
author |
dc.subject.none.fl_str_mv |
DCC - GARCH heteroscedastic models MCMC methodology Modelos heterocedasticos DCC - GARCH metodología MCMC |
topic |
DCC - GARCH heteroscedastic models MCMC methodology Modelos heterocedasticos DCC - GARCH metodología MCMC |
description |
In this work, the modeling of the volatility of financial assets is studied using a Bayesian approach. DCC - GARCH models are used, for the errors of these models asymmetric and leptokurtic probability distributions are considered, which are parameterized according to the asymmetry and the weight of the tails, therefore these parameters are also estimated. The estimation of the model parameters was performed using the MCMC methodology Metropolis - Hastings random walk algorithm using the software R package bayesDccGarch, daily data from 04/01/2015 - 01/31/2020 of the stock indices of: Frankfurt are considered (DAX), Tokyo (NIKKEI225), Paris (CAC40), and Lima (BVL). The Bayesian approach to estimating the model parameters facilitates interpretation and provides the ability to insert a priori information for the parameters. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-30 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/21152 10.15381/pesquimat.v24i2.21152 |
url |
https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/21152 |
identifier_str_mv |
10.15381/pesquimat.v24i2.21152 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/21152/17587 |
dc.rights.none.fl_str_mv |
Derechos de autor 2021 Edwin Antero Flores Montoya, Antonio Bravo Quiroz http://creativecommons.org/licenses/by-nc-sa/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2021 Edwin Antero Flores Montoya, Antonio Bravo Quiroz http://creativecommons.org/licenses/by-nc-sa/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas |
publisher.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas |
dc.source.none.fl_str_mv |
Pesquimat; Vol. 24 No. 2 (2021); 1-12 Pesquimat; Vol. 24 Núm. 2 (2021); 1-12 1609-8439 1560-912X reponame:Revistas - Universidad Nacional Mayor de San Marcos instname:Universidad Nacional Mayor de San Marcos instacron:UNMSM |
instname_str |
Universidad Nacional Mayor de San Marcos |
instacron_str |
UNMSM |
institution |
UNMSM |
reponame_str |
Revistas - Universidad Nacional Mayor de San Marcos |
collection |
Revistas - Universidad Nacional Mayor de San Marcos |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1795238281154134016 |
score |
13.914502 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).