A Bayesian Approach to Heterocedastic Models of Time Series and its Application in the Volatility of Financial Assets

Descripción del Articulo

In this work, the modeling of the volatility of financial assets is studied using a Bayesian approach. DCC - GARCH models are used, for the errors of these models asymmetric and leptokurtic probability distributions are considered, which are parameterized according to the asymmetry and the weight of...

Descripción completa

Detalles Bibliográficos
Autores: Flores Montoya, Edwin Antero, Bravo Quiroz, Antonio
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/21152
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/21152
Nivel de acceso:acceso abierto
Materia:DCC - GARCH heteroscedastic models
MCMC methodology
Modelos heterocedasticos DCC - GARCH
metodología MCMC
id REVUNMSM_5de5d225dee52347213ae70deca69e78
oai_identifier_str oai:ojs.csi.unmsm:article/21152
network_acronym_str REVUNMSM
network_name_str Revistas - Universidad Nacional Mayor de San Marcos
repository_id_str
spelling A Bayesian Approach to Heterocedastic Models of Time Series and its Application in the Volatility of Financial AssetsUn Enfoque Bayesiano en Modelos Heterocedásticos de Series de Tiempo y su Aplicación en la Volatilidad de Activos FinancierosFlores Montoya, Edwin AnteroBravo Quiroz, AntonioFlores Montoya, Edwin AnteroBravo Quiroz, AntonioDCC - GARCH heteroscedastic modelsMCMC methodologyModelos heterocedasticos DCC - GARCHmetodología MCMCIn this work, the modeling of the volatility of financial assets is studied using a Bayesian approach. DCC - GARCH models are used, for the errors of these models asymmetric and leptokurtic probability distributions are considered, which are parameterized according to the asymmetry and the weight of the tails, therefore these parameters are also estimated. The estimation of the model parameters was performed using the MCMC methodology Metropolis - Hastings random walk algorithm using the software R package bayesDccGarch, daily data from 04/01/2015 - 01/31/2020 of the stock indices of: Frankfurt are considered (DAX), Tokyo (NIKKEI225), Paris (CAC40), and Lima (BVL). The Bayesian approach to estimating the model parameters facilitates interpretation and provides the ability to insert a priori information for the parameters.En este trabajo, se estudia la modelación de la volatilidad de activos financieros mediante un enfoque bayesiano. Se utilizan modelos DCC - GARCH, para los errores de estos modelos se consideran distribuciones de probabilidad asimétricas y leptocúrticas, las cuales se parametrizan en función de la asimetría y el peso de las colas, por lo que también se estiman estos parámetros. La estimación de los parámetros del modelo se realizó mediante la metodología MCMC algoritmo Metropolis - Hastings caminata aleatoria haciendo uso del software R paquete bayesDccGarch, se consideran datos diarios del 1/04/2015 - 31/01/2020 de los índices bursátiles de: Frankfurt (DAX), Tokio (NIKKEI225), París (CAC40), y de Lima (BVL). El enfoque bayesiano para la estimación de los parámetros del modelo facilita la interpretación y brinda la posibilidad de insertar información a priori para los parámetros.Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas2021-12-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/2115210.15381/pesquimat.v24i2.21152Pesquimat; Vol. 24 No. 2 (2021); 1-12Pesquimat; Vol. 24 Núm. 2 (2021); 1-121609-84391560-912Xreponame:Revistas - Universidad Nacional Mayor de San Marcosinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMspahttps://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/21152/17587Derechos de autor 2021 Edwin Antero Flores Montoya, Antonio Bravo Quirozhttp://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessoai:ojs.csi.unmsm:article/211522021-12-30T12:10:29Z
dc.title.none.fl_str_mv A Bayesian Approach to Heterocedastic Models of Time Series and its Application in the Volatility of Financial Assets
Un Enfoque Bayesiano en Modelos Heterocedásticos de Series de Tiempo y su Aplicación en la Volatilidad de Activos Financieros
title A Bayesian Approach to Heterocedastic Models of Time Series and its Application in the Volatility of Financial Assets
spellingShingle A Bayesian Approach to Heterocedastic Models of Time Series and its Application in the Volatility of Financial Assets
Flores Montoya, Edwin Antero
DCC - GARCH heteroscedastic models
MCMC methodology
Modelos heterocedasticos DCC - GARCH
metodología MCMC
title_short A Bayesian Approach to Heterocedastic Models of Time Series and its Application in the Volatility of Financial Assets
title_full A Bayesian Approach to Heterocedastic Models of Time Series and its Application in the Volatility of Financial Assets
title_fullStr A Bayesian Approach to Heterocedastic Models of Time Series and its Application in the Volatility of Financial Assets
title_full_unstemmed A Bayesian Approach to Heterocedastic Models of Time Series and its Application in the Volatility of Financial Assets
title_sort A Bayesian Approach to Heterocedastic Models of Time Series and its Application in the Volatility of Financial Assets
dc.creator.none.fl_str_mv Flores Montoya, Edwin Antero
Bravo Quiroz, Antonio
Flores Montoya, Edwin Antero
Bravo Quiroz, Antonio
author Flores Montoya, Edwin Antero
author_facet Flores Montoya, Edwin Antero
Bravo Quiroz, Antonio
author_role author
author2 Bravo Quiroz, Antonio
author2_role author
dc.subject.none.fl_str_mv DCC - GARCH heteroscedastic models
MCMC methodology
Modelos heterocedasticos DCC - GARCH
metodología MCMC
topic DCC - GARCH heteroscedastic models
MCMC methodology
Modelos heterocedasticos DCC - GARCH
metodología MCMC
description In this work, the modeling of the volatility of financial assets is studied using a Bayesian approach. DCC - GARCH models are used, for the errors of these models asymmetric and leptokurtic probability distributions are considered, which are parameterized according to the asymmetry and the weight of the tails, therefore these parameters are also estimated. The estimation of the model parameters was performed using the MCMC methodology Metropolis - Hastings random walk algorithm using the software R package bayesDccGarch, daily data from 04/01/2015 - 01/31/2020 of the stock indices of: Frankfurt are considered (DAX), Tokyo (NIKKEI225), Paris (CAC40), and Lima (BVL). The Bayesian approach to estimating the model parameters facilitates interpretation and provides the ability to insert a priori information for the parameters.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/21152
10.15381/pesquimat.v24i2.21152
url https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/21152
identifier_str_mv 10.15381/pesquimat.v24i2.21152
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/21152/17587
dc.rights.none.fl_str_mv Derechos de autor 2021 Edwin Antero Flores Montoya, Antonio Bravo Quiroz
http://creativecommons.org/licenses/by-nc-sa/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2021 Edwin Antero Flores Montoya, Antonio Bravo Quiroz
http://creativecommons.org/licenses/by-nc-sa/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas
publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas
dc.source.none.fl_str_mv Pesquimat; Vol. 24 No. 2 (2021); 1-12
Pesquimat; Vol. 24 Núm. 2 (2021); 1-12
1609-8439
1560-912X
reponame:Revistas - Universidad Nacional Mayor de San Marcos
instname:Universidad Nacional Mayor de San Marcos
instacron:UNMSM
instname_str Universidad Nacional Mayor de San Marcos
instacron_str UNMSM
institution UNMSM
reponame_str Revistas - Universidad Nacional Mayor de San Marcos
collection Revistas - Universidad Nacional Mayor de San Marcos
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1795238281154134016
score 13.914502
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).