A Bayesian Approach to Heterocedastic Models of Time Series and its Application in the Volatility of Financial Assets

Descripción del Articulo

In this work, the modeling of the volatility of financial assets is studied using a Bayesian approach. DCC - GARCH models are used, for the errors of these models asymmetric and leptokurtic probability distributions are considered, which are parameterized according to the asymmetry and the weight of...

Descripción completa

Detalles Bibliográficos
Autores: Flores Montoya, Edwin Antero, Bravo Quiroz, Antonio
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/21152
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/21152
Nivel de acceso:acceso abierto
Materia:DCC - GARCH heteroscedastic models
MCMC methodology
Modelos heterocedasticos DCC - GARCH
metodología MCMC
Descripción
Sumario:In this work, the modeling of the volatility of financial assets is studied using a Bayesian approach. DCC - GARCH models are used, for the errors of these models asymmetric and leptokurtic probability distributions are considered, which are parameterized according to the asymmetry and the weight of the tails, therefore these parameters are also estimated. The estimation of the model parameters was performed using the MCMC methodology Metropolis - Hastings random walk algorithm using the software R package bayesDccGarch, daily data from 04/01/2015 - 01/31/2020 of the stock indices of: Frankfurt are considered (DAX), Tokyo (NIKKEI225), Paris (CAC40), and Lima (BVL). The Bayesian approach to estimating the model parameters facilitates interpretation and provides the ability to insert a priori information for the parameters.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).