Optimization and implementation of a system recognition of faces

Descripción del Articulo

Security systems controlled by biometric type characteristics are experiencing a growing interest compared to traditional alternatives. This success is largely due to the fact that, when a person wants to access a system, the decision is made based on specific characteristics of that person, and not...

Descripción completa

Detalles Bibliográficos
Autores: del Carpio Salinas, Jorge Alberto, Huamán Layme, Jose Antonio
Formato: artículo
Fecha de Publicación:2006
Institución:Universidad Nacional de Ingeniería
Repositorio:Revistas - Universidad Nacional de Ingeniería
Lenguaje:español
OAI Identifier:oai:oai:revistas.uni.edu.pe:article/387
Enlace del recurso:https://revistas.uni.edu.pe/index.php/tecnia/article/view/387
Nivel de acceso:acceso abierto
Materia:base de datos
biometría
cámara
sensores
eigenfaces
métodos estadísticos
modelo de markov
statistical data base
biometry
camera
sensors
statistical methods
model of markov
Descripción
Sumario:Security systems controlled by biometric type characteristics are experiencing a growing interest compared to traditional alternatives. This success is largely due to the fact that, when a person wants to access a system, the decision is made based on specific characteristics of that person, and not based on what is known or what he or she has (magnetic cards, passwords, etc.). , etc); In recent years, the great development of information systems, together with the spread and massification of computers and sensors, has led to a growing interest in systems that allow the identity of an individual to be established in an automated manner. Faced with this, this work describes and implements a face recognizer using the most successful techniques in the field of biometrics based on Statistical methods such as: Eingenface type decompositions and Embedded Hidden Markov Model (HMME). The first method generates a reduced linear representation of the face images so that each face is projected in a reduced dimensional space where recognition will take place. The second method generates a model of states. For this, a database of faces obtained with students from the National University of Engineering UNI, a camera, a digitizing card has been used and the system was implemented almost in real time using C++.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).