ASYMPTOTIC BEHAVIOR OF NONOSCILLATORY SOLUTIONS OF FOURTH ORDER LINEAR DIFFERENTIAL EQUATIONS

Descripción del Articulo

This article deals with the asymptotic behavior of nonoscillatory solutions of fourth order linear differential equation where the coefficients are perturbations of linear constant coefficient equation. We define a change of variable and deduce that the new variable satisfies a third order nonlinear...

Descripción completa

Detalles Bibliográficos
Autores: Coronel, Anibal, Huancas, Fernando, Pinto, Manuel
Formato: artículo
Fecha de Publicación:2016
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/1248
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1248
Nivel de acceso:acceso abierto
Materia:Poincaré-Perron problem
asymptotic behavior
Riccati type equations
Problema de Poincare-Perron
comportamiento asintótico
ecuaciones tipo Riccati
id REVUNITRU_2fd3732bf8ce3fda19968e505bff6b93
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/1248
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
dc.title.none.fl_str_mv ASYMPTOTIC BEHAVIOR OF NONOSCILLATORY SOLUTIONS OF FOURTH ORDER LINEAR DIFFERENTIAL EQUATIONS
COMPORTAMIENTO ASINTÓTICO DE SOLUCIONES NO OSCILATORIAS DE CUARTO ORDEN DE ECUACIONES DIFERENCIALES LINEALES
title ASYMPTOTIC BEHAVIOR OF NONOSCILLATORY SOLUTIONS OF FOURTH ORDER LINEAR DIFFERENTIAL EQUATIONS
spellingShingle ASYMPTOTIC BEHAVIOR OF NONOSCILLATORY SOLUTIONS OF FOURTH ORDER LINEAR DIFFERENTIAL EQUATIONS
Coronel, Anibal
Poincaré-Perron problem
asymptotic behavior
Riccati type equations
Problema de Poincare-Perron
comportamiento asintótico
ecuaciones tipo Riccati
title_short ASYMPTOTIC BEHAVIOR OF NONOSCILLATORY SOLUTIONS OF FOURTH ORDER LINEAR DIFFERENTIAL EQUATIONS
title_full ASYMPTOTIC BEHAVIOR OF NONOSCILLATORY SOLUTIONS OF FOURTH ORDER LINEAR DIFFERENTIAL EQUATIONS
title_fullStr ASYMPTOTIC BEHAVIOR OF NONOSCILLATORY SOLUTIONS OF FOURTH ORDER LINEAR DIFFERENTIAL EQUATIONS
title_full_unstemmed ASYMPTOTIC BEHAVIOR OF NONOSCILLATORY SOLUTIONS OF FOURTH ORDER LINEAR DIFFERENTIAL EQUATIONS
title_sort ASYMPTOTIC BEHAVIOR OF NONOSCILLATORY SOLUTIONS OF FOURTH ORDER LINEAR DIFFERENTIAL EQUATIONS
dc.creator.none.fl_str_mv Coronel, Anibal
Huancas, Fernando
Pinto, Manuel
author Coronel, Anibal
author_facet Coronel, Anibal
Huancas, Fernando
Pinto, Manuel
author_role author
author2 Huancas, Fernando
Pinto, Manuel
author2_role author
author
dc.subject.none.fl_str_mv Poincaré-Perron problem
asymptotic behavior
Riccati type equations
Problema de Poincare-Perron
comportamiento asintótico
ecuaciones tipo Riccati
topic Poincaré-Perron problem
asymptotic behavior
Riccati type equations
Problema de Poincare-Perron
comportamiento asintótico
ecuaciones tipo Riccati
description This article deals with the asymptotic behavior of nonoscillatory solutions of fourth order linear differential equation where the coefficients are perturbations of linear constant coefficient equation. We define a change of variable and deduce that the new variable satisfies a third order nonlinear differential equation. We assume three hypotheses. The first hypothesis is related to the constant coefficients and set up that the characteristic polynomial associated with the fourth order linear equation has simple and real roots. The other two hypotheses are related to the behavior of theperturbation functions and establish asymptotic integral smallness conditions of the perturbations. Under these general hypotheses, we obtain four main results. The first two results are related to the application of a fixed point argument to prove that the nonlinear third order equation has a unique solution. The next result concerns with the asymptotic behavior of the solutions of the nonlinear third order equation. The fourth main theorem is introduced to establish the existence of a fundamental system of solutions and to precise the formulas for the asymptotic behavior of the linear fourth order differential equation. In addition, we present an example to show that the results introduced in this paper can be applied in situations where the assumptions of some classical theorems are not satisfied.
publishDate 2016
dc.date.none.fl_str_mv 2016-06-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1248
url https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1248
dc.language.none.fl_str_mv eng
spa
language eng
spa
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1248/2361
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1248/2362
dc.rights.none.fl_str_mv Derechos de autor 2017 Selecciones Matemáticas
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2017 Selecciones Matemáticas
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
dc.source.none.fl_str_mv Selecciones Matemáticas; Vol. 3 No. 01 (2016): January - July; 47-54
Selecciones Matemáticas; Vol. 3 Núm. 01 (2016): Enero - Julio; 47-54
Selecciones Matemáticas; v. 3 n. 01 (2016): Enero - Julio; 47-54
2411-1783
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1845253415068762112
spelling ASYMPTOTIC BEHAVIOR OF NONOSCILLATORY SOLUTIONS OF FOURTH ORDER LINEAR DIFFERENTIAL EQUATIONSCOMPORTAMIENTO ASINTÓTICO DE SOLUCIONES NO OSCILATORIAS DE CUARTO ORDEN DE ECUACIONES DIFERENCIALES LINEALESCoronel, AnibalHuancas, FernandoPinto, ManuelPoincaré-Perron problemasymptotic behaviorRiccati type equationsProblema de Poincare-Perroncomportamiento asintóticoecuaciones tipo RiccatiThis article deals with the asymptotic behavior of nonoscillatory solutions of fourth order linear differential equation where the coefficients are perturbations of linear constant coefficient equation. We define a change of variable and deduce that the new variable satisfies a third order nonlinear differential equation. We assume three hypotheses. The first hypothesis is related to the constant coefficients and set up that the characteristic polynomial associated with the fourth order linear equation has simple and real roots. The other two hypotheses are related to the behavior of theperturbation functions and establish asymptotic integral smallness conditions of the perturbations. Under these general hypotheses, we obtain four main results. The first two results are related to the application of a fixed point argument to prove that the nonlinear third order equation has a unique solution. The next result concerns with the asymptotic behavior of the solutions of the nonlinear third order equation. The fourth main theorem is introduced to establish the existence of a fundamental system of solutions and to precise the formulas for the asymptotic behavior of the linear fourth order differential equation. In addition, we present an example to show that the results introduced in this paper can be applied in situations where the assumptions of some classical theorems are not satisfied.Este artículo trata sobre el comportamiento asintótico de soluciones no oscilatorias de cuarto orden de ecuaciones diferenciales lineales donde los coeficientes son perturbaciones de la ecuación coeficiente constante lineal. Definimos un cambio de variable y deducimos que la nueva variable satisface una ecuación diferencial no lineal de tercer orden. Suponemos tres hipótesis. La primera hipótesis está relacionado con los coeficientes constantes y establece que la característica del polinomio asociado a la ecuación lineal de cuarto orden tiene raíces simples y reales. Las otras dos hipótesis están relacionadas con el comportamiento de las funciones de perturbación y establecen pequeñas condiciones de perturbación para las integrales asintóticas. Bajo estas hipótesis generales,se obtienen cuatro resultados principales. Los dos primeros resultados están relacionados con la aplicación de un argumento punto fijo para demostrar que el tercero no lineal ecuación de ordentiene una solución única. El siguiente resultado esta relacionado con el comportamiento asintótico de las soluciones no lineales de la ecuación de tercer orden. El cuarto principal teorema se introducepara establecer la existencia de un sistema fundamental de soluciones y precisa las fórmulas para el comportamiento asintótico de la cuarta ecuación diferencial de orden lineal. En adición,presentamos un ejemplo para mostrar que los resultados introducidos en este de artículo se pueden aplicar en situaciones en las suposiciones de algunos teoremas clásicas no están satisfechos.National University of Trujillo - Academic Department of Mathematics2016-06-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/1248Selecciones Matemáticas; Vol. 3 No. 01 (2016): January - July; 47-54Selecciones Matemáticas; Vol. 3 Núm. 01 (2016): Enero - Julio; 47-54Selecciones Matemáticas; v. 3 n. 01 (2016): Enero - Julio; 47-542411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUengspahttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/1248/2361https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1248/2362Derechos de autor 2017 Selecciones Matemáticasinfo:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/12482022-10-21T18:55:28Z
score 13.243185
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).