ASYMPTOTIC BEHAVIOR OF NONOSCILLATORY SOLUTIONS OF FOURTH ORDER LINEAR DIFFERENTIAL EQUATIONS
Descripción del Articulo
This article deals with the asymptotic behavior of nonoscillatory solutions of fourth order linear differential equation where the coefficients are perturbations of linear constant coefficient equation. We define a change of variable and deduce that the new variable satisfies a third order nonlinear...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2016 |
Institución: | Universidad Nacional de Trujillo |
Repositorio: | Revistas - Universidad Nacional de Trujillo |
Lenguaje: | inglés español |
OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/1248 |
Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1248 |
Nivel de acceso: | acceso abierto |
Materia: | Poincaré-Perron problem asymptotic behavior Riccati type equations Problema de Poincare-Perron comportamiento asintótico ecuaciones tipo Riccati |
Sumario: | This article deals with the asymptotic behavior of nonoscillatory solutions of fourth order linear differential equation where the coefficients are perturbations of linear constant coefficient equation. We define a change of variable and deduce that the new variable satisfies a third order nonlinear differential equation. We assume three hypotheses. The first hypothesis is related to the constant coefficients and set up that the characteristic polynomial associated with the fourth order linear equation has simple and real roots. The other two hypotheses are related to the behavior of theperturbation functions and establish asymptotic integral smallness conditions of the perturbations. Under these general hypotheses, we obtain four main results. The first two results are related to the application of a fixed point argument to prove that the nonlinear third order equation has a unique solution. The next result concerns with the asymptotic behavior of the solutions of the nonlinear third order equation. The fourth main theorem is introduced to establish the existence of a fundamental system of solutions and to precise the formulas for the asymptotic behavior of the linear fourth order differential equation. In addition, we present an example to show that the results introduced in this paper can be applied in situations where the assumptions of some classical theorems are not satisfied. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).