Normal forms of vector fields induced by holomorphic actions of the group SL(2,C) on a complex manifold
Descripción del Articulo
In this work, we study actions of the Lie group SL(2,C) on a complex manifold of dimension three or higher. It is demonstrated that these types of actions induce three complete holomorphic vector fields, one of which is periodic, and that there exists a particular relationship between them, given by...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Universidad Nacional de Trujillo |
Repositorio: | Revistas - Universidad Nacional de Trujillo |
Lenguaje: | español |
OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/6159 |
Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6159 |
Nivel de acceso: | acceso abierto |
Materia: | Campos vectoriales corchete de Lie acción holomorfa conjunto singular Vector fields Lie bracket holomorphic action singular set |
id |
REVUNITRU_0f9b0474a9fb8a630ecd2b7c3753c16f |
---|---|
oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/6159 |
network_acronym_str |
REVUNITRU |
network_name_str |
Revistas - Universidad Nacional de Trujillo |
repository_id_str |
|
spelling |
Normal forms of vector fields induced by holomorphic actions of the group SL(2,C) on a complex manifoldFormas normales de campos vectoriales inducidos por acciones holomorfas del grupo SL(2,C) sobre una variedad complejaOstos Cordero, Benito LeonardoCampos vectorialescorchete de Lieacción holomorfaconjunto singularVector fieldsLie bracketholomorphic actionsingular setIn this work, we study actions of the Lie group SL(2,C) on a complex manifold of dimension three or higher. It is demonstrated that these types of actions induce three complete holomorphic vector fields, one of which is periodic, and that there exists a particular relationship between them, given by the Lie bracket, which generates a singular holomorphic foliation of codimension two. Subsequently, the types of singularities are classified, and the normal forms of these vector fields are obtained in a neighborhood of each singular point of the foliation.En este trabajo se estudian las acciones del grupo de Lie SL(2,C) sobre una variedad compleja de dimensión mayor o igual a tres. Se demuestra que este tipo de acciones induce tres campos vectoriales holomorfos completos, uno de los cuales es periódico, y que existe una relación particular entre ellos, dada por el corchete de Lie, que genera una foliación holomorfa singular de codimensión dos. Posteriormente, se clasifican los tipos de singularidades y se obtienen las formas normales de estos campos en una vecindad de cada punto singular de la foliación.National University of Trujillo - Academic Department of Mathematics2024-12-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6159Selecciones Matemáticas; Vol. 11 No. 02 (2024): August - December; 285 - 302Selecciones Matemáticas; Vol. 11 Núm. 02 (2024): Agosto - Diciembre; 285 - 302Selecciones Matemáticas; v. 11 n. 02 (2024): Agosto - Dezembro; 285 - 3022411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6159/6262https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/61592024-12-28T04:55:24Z |
dc.title.none.fl_str_mv |
Normal forms of vector fields induced by holomorphic actions of the group SL(2,C) on a complex manifold Formas normales de campos vectoriales inducidos por acciones holomorfas del grupo SL(2,C) sobre una variedad compleja |
title |
Normal forms of vector fields induced by holomorphic actions of the group SL(2,C) on a complex manifold |
spellingShingle |
Normal forms of vector fields induced by holomorphic actions of the group SL(2,C) on a complex manifold Ostos Cordero, Benito Leonardo Campos vectoriales corchete de Lie acción holomorfa conjunto singular Vector fields Lie bracket holomorphic action singular set |
title_short |
Normal forms of vector fields induced by holomorphic actions of the group SL(2,C) on a complex manifold |
title_full |
Normal forms of vector fields induced by holomorphic actions of the group SL(2,C) on a complex manifold |
title_fullStr |
Normal forms of vector fields induced by holomorphic actions of the group SL(2,C) on a complex manifold |
title_full_unstemmed |
Normal forms of vector fields induced by holomorphic actions of the group SL(2,C) on a complex manifold |
title_sort |
Normal forms of vector fields induced by holomorphic actions of the group SL(2,C) on a complex manifold |
dc.creator.none.fl_str_mv |
Ostos Cordero, Benito Leonardo |
author |
Ostos Cordero, Benito Leonardo |
author_facet |
Ostos Cordero, Benito Leonardo |
author_role |
author |
dc.subject.none.fl_str_mv |
Campos vectoriales corchete de Lie acción holomorfa conjunto singular Vector fields Lie bracket holomorphic action singular set |
topic |
Campos vectoriales corchete de Lie acción holomorfa conjunto singular Vector fields Lie bracket holomorphic action singular set |
description |
In this work, we study actions of the Lie group SL(2,C) on a complex manifold of dimension three or higher. It is demonstrated that these types of actions induce three complete holomorphic vector fields, one of which is periodic, and that there exists a particular relationship between them, given by the Lie bracket, which generates a singular holomorphic foliation of codimension two. Subsequently, the types of singularities are classified, and the normal forms of these vector fields are obtained in a neighborhood of each singular point of the foliation. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-12-28 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6159 |
url |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6159 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6159/6262 |
dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
dc.source.none.fl_str_mv |
Selecciones Matemáticas; Vol. 11 No. 02 (2024): August - December; 285 - 302 Selecciones Matemáticas; Vol. 11 Núm. 02 (2024): Agosto - Diciembre; 285 - 302 Selecciones Matemáticas; v. 11 n. 02 (2024): Agosto - Dezembro; 285 - 302 2411-1783 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
instname_str |
Universidad Nacional de Trujillo |
instacron_str |
UNITRU |
institution |
UNITRU |
reponame_str |
Revistas - Universidad Nacional de Trujillo |
collection |
Revistas - Universidad Nacional de Trujillo |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1841449184225394688 |
score |
13.10263 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).