Machine learning model for predicting school dropout through household surveys

Descripción del Articulo

The persistent issue of student dropout negatively impacts the educational sector and society at large. This study presents a machine learning model that leverages data from the National Household Survey to predict student dropout in Peru, integrating a wide range of socio-demographic variables. The...

Descripción completa

Detalles Bibliográficos
Autores: Jacha Rojas, Johnny P., Yataco Cañari, Walter, Ospina Galindez, Johann A.
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Nacional Hermilio Valdizan
Repositorio:Revistas - Universidad Nacional Hermilio Valdizán
Lenguaje:español
OAI Identifier:oai:revistas.unheval.edu.pe:article/2308
Enlace del recurso:http://revistas.unheval.edu.pe/index.php/rifce/article/view/2308
Nivel de acceso:acceso abierto
Materia:Estrategias
didácticas
interactivas del docente
strategies
didactic
teacher interactive
Descripción
Sumario:The persistent issue of student dropout negatively impacts the educational sector and society at large. This study presents a machine learning model that leverages data from the National Household Survey to predict student dropout in Peru, integrating a wide range of socio-demographic variables. The research fills a gap in existing literature by providing a model that incorporates socio-demographic variables, an area not fully explored in previous studies. The predictive model aims to identify factors associated with student dropout, aiding educational stakeholders in implementing effective interventions. The findings underscore the model's potential to enhance educational outcomes by enabling early identification of at-risk students, thereby facilitating targeted support. This work contributes to refining predictive models of university dropout rates and sug- gests the use of ensemble methods to improve the accu- racy of single-model predictions. Future research could further explore computational methodologies like deep learning and hybrid models to predict dropout rates and their comparison with this study's outcomes, considering additional influential factors not covered in this research.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).