Exportación Completada — 

Predicting job abandonment through genetic algorithms and artificial neural networks

Descripción del Articulo

This research work aims to develop a tool to identify employees who might abandon their position, because job abandonment is considered an international problem. The proposed method consists of a genetic algorithm that allows identifying the significant variables and improving the architecture of an...

Descripción completa

Detalles Bibliográficos
Autor: Reyes-Huertas, Gonzalo
Formato: artículo
Fecha de Publicación:2019
Institución:Universidad de Lima
Repositorio:Revistas - Universidad de Lima
Lenguaje:español
OAI Identifier:oai:revistas.ulima.edu.pe:article/4636
Enlace del recurso:https://revistas.ulima.edu.pe/index.php/Interfases/article/view/4636
Nivel de acceso:acceso abierto
Materia:Artificial neural network
genetic algorithm
employee turnover
neural network architecture
Red neuronal artificial
algoritmo genético
rotación de personal
arquitectura de redes neuronales
Descripción
Sumario:This research work aims to develop a tool to identify employees who might abandon their position, because job abandonment is considered an international problem. The proposed method consists of a genetic algorithm that allows identifying the significant variables and improving the architecture of an artificial neural network as a solution. The variables selected by the tool were similar to those collected from different studies but not all of them were considered in such studies (e.g., distance between home and workplace, and years of employment). Likewise, the variables and architecture selected by the tool allowed to predict job abandonment up to 88.92 % accuracy rate.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).