Predicting job abandonment through genetic algorithms and artificial neural networks

Descripción del Articulo

This research work aims to develop a tool to identify employees who might abandon their position, because job abandonment is considered an international problem. The proposed method consists of a genetic algorithm that allows identifying the significant variables and improving the architecture of an...

Descripción completa

Detalles Bibliográficos
Autor: Reyes-Huertas, Gonzalo
Formato: artículo
Fecha de Publicación:2019
Institución:Universidad de Lima
Repositorio:Revistas - Universidad de Lima
Lenguaje:español
OAI Identifier:oai:revistas.ulima.edu.pe:article/4636
Enlace del recurso:https://revistas.ulima.edu.pe/index.php/Interfases/article/view/4636
Nivel de acceso:acceso abierto
Materia:Artificial neural network
genetic algorithm
employee turnover
neural network architecture
Red neuronal artificial
algoritmo genético
rotación de personal
arquitectura de redes neuronales
id REVULIMA_d7e8c1a56e1508a2d76a51aab2acb146
oai_identifier_str oai:revistas.ulima.edu.pe:article/4636
network_acronym_str REVULIMA
network_name_str Revistas - Universidad de Lima
repository_id_str
spelling Predicting job abandonment through genetic algorithms and artificial neural networksPredicción de deserción laboral utilizando un algoritmo genético y redes neuronales artificialesReyes-Huertas, GonzaloArtificial neural networkgenetic algorithmemployee turnoverneural network architectureRed neuronal artificialalgoritmo genéticorotación de personalarquitectura de redes neuronalesThis research work aims to develop a tool to identify employees who might abandon their position, because job abandonment is considered an international problem. The proposed method consists of a genetic algorithm that allows identifying the significant variables and improving the architecture of an artificial neural network as a solution. The variables selected by the tool were similar to those collected from different studies but not all of them were considered in such studies (e.g., distance between home and workplace, and years of employment). Likewise, the variables and architecture selected by the tool allowed to predict job abandonment up to 88.92 % accuracy rate.El objetivo del trabajo de investigación es desarrollar una herramienta que permita identificar la posible deserción de un empleado, entendiendo la deserción laboral como un problema internacional. El método propuesto consiste en un algoritmo genético que identifica las variables relevantes y mejora la arquitectura de una red neuronal artificial como solución. Las variables seleccionadas por la herramienta concordaban con las variables recopiladas de distintos estudios, descubriéndose que no todas eran consideradas en dichos estudios (e.g., distancia del hogar al trabajo y años totales trabajando). Asimismo, las variables y la arquitectura seleccionadas por la herramienta permitieron predecir la deserción laboral hasta un 88,92 % de exactitud.Universidad de Lima2019-12-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/463610.26439/interfases2019.n012.4636Interfases; No. 012 (2019); 32-48Interfases; Núm. 012 (2019); 32-48Interfases; n. 012 (2019); 32-481993-491210.26439/interfases2019.n012reponame:Revistas - Universidad de Limainstname:Universidad de Limainstacron:ULIMAspahttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/4636/4622Derechos de autor 2020 Interfasesinfo:eu-repo/semantics/openAccessoai:revistas.ulima.edu.pe:article/46362023-07-24T13:32:44Z
dc.title.none.fl_str_mv Predicting job abandonment through genetic algorithms and artificial neural networks
Predicción de deserción laboral utilizando un algoritmo genético y redes neuronales artificiales
title Predicting job abandonment through genetic algorithms and artificial neural networks
spellingShingle Predicting job abandonment through genetic algorithms and artificial neural networks
Reyes-Huertas, Gonzalo
Artificial neural network
genetic algorithm
employee turnover
neural network architecture
Red neuronal artificial
algoritmo genético
rotación de personal
arquitectura de redes neuronales
title_short Predicting job abandonment through genetic algorithms and artificial neural networks
title_full Predicting job abandonment through genetic algorithms and artificial neural networks
title_fullStr Predicting job abandonment through genetic algorithms and artificial neural networks
title_full_unstemmed Predicting job abandonment through genetic algorithms and artificial neural networks
title_sort Predicting job abandonment through genetic algorithms and artificial neural networks
dc.creator.none.fl_str_mv Reyes-Huertas, Gonzalo
author Reyes-Huertas, Gonzalo
author_facet Reyes-Huertas, Gonzalo
author_role author
dc.subject.none.fl_str_mv Artificial neural network
genetic algorithm
employee turnover
neural network architecture
Red neuronal artificial
algoritmo genético
rotación de personal
arquitectura de redes neuronales
topic Artificial neural network
genetic algorithm
employee turnover
neural network architecture
Red neuronal artificial
algoritmo genético
rotación de personal
arquitectura de redes neuronales
description This research work aims to develop a tool to identify employees who might abandon their position, because job abandonment is considered an international problem. The proposed method consists of a genetic algorithm that allows identifying the significant variables and improving the architecture of an artificial neural network as a solution. The variables selected by the tool were similar to those collected from different studies but not all of them were considered in such studies (e.g., distance between home and workplace, and years of employment). Likewise, the variables and architecture selected by the tool allowed to predict job abandonment up to 88.92 % accuracy rate.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ulima.edu.pe/index.php/Interfases/article/view/4636
10.26439/interfases2019.n012.4636
url https://revistas.ulima.edu.pe/index.php/Interfases/article/view/4636
identifier_str_mv 10.26439/interfases2019.n012.4636
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ulima.edu.pe/index.php/Interfases/article/view/4636/4622
dc.rights.none.fl_str_mv Derechos de autor 2020 Interfases
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2020 Interfases
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Lima
publisher.none.fl_str_mv Universidad de Lima
dc.source.none.fl_str_mv Interfases; No. 012 (2019); 32-48
Interfases; Núm. 012 (2019); 32-48
Interfases; n. 012 (2019); 32-48
1993-4912
10.26439/interfases2019.n012
reponame:Revistas - Universidad de Lima
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str Revistas - Universidad de Lima
collection Revistas - Universidad de Lima
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1841719305266266112
score 12.8608675
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).