Predicting job abandonment through genetic algorithms and artificial neural networks
Descripción del Articulo
This research work aims to develop a tool to identify employees who might abandon their position, because job abandonment is considered an international problem. The proposed method consists of a genetic algorithm that allows identifying the significant variables and improving the architecture of an...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2019 |
Institución: | Universidad de Lima |
Repositorio: | Revistas - Universidad de Lima |
Lenguaje: | español |
OAI Identifier: | oai:revistas.ulima.edu.pe:article/4636 |
Enlace del recurso: | https://revistas.ulima.edu.pe/index.php/Interfases/article/view/4636 |
Nivel de acceso: | acceso abierto |
Materia: | Artificial neural network genetic algorithm employee turnover neural network architecture Red neuronal artificial algoritmo genético rotación de personal arquitectura de redes neuronales |
id |
REVULIMA_d7e8c1a56e1508a2d76a51aab2acb146 |
---|---|
oai_identifier_str |
oai:revistas.ulima.edu.pe:article/4636 |
network_acronym_str |
REVULIMA |
network_name_str |
Revistas - Universidad de Lima |
repository_id_str |
|
spelling |
Predicting job abandonment through genetic algorithms and artificial neural networksPredicción de deserción laboral utilizando un algoritmo genético y redes neuronales artificialesReyes-Huertas, GonzaloArtificial neural networkgenetic algorithmemployee turnoverneural network architectureRed neuronal artificialalgoritmo genéticorotación de personalarquitectura de redes neuronalesThis research work aims to develop a tool to identify employees who might abandon their position, because job abandonment is considered an international problem. The proposed method consists of a genetic algorithm that allows identifying the significant variables and improving the architecture of an artificial neural network as a solution. The variables selected by the tool were similar to those collected from different studies but not all of them were considered in such studies (e.g., distance between home and workplace, and years of employment). Likewise, the variables and architecture selected by the tool allowed to predict job abandonment up to 88.92 % accuracy rate.El objetivo del trabajo de investigación es desarrollar una herramienta que permita identificar la posible deserción de un empleado, entendiendo la deserción laboral como un problema internacional. El método propuesto consiste en un algoritmo genético que identifica las variables relevantes y mejora la arquitectura de una red neuronal artificial como solución. Las variables seleccionadas por la herramienta concordaban con las variables recopiladas de distintos estudios, descubriéndose que no todas eran consideradas en dichos estudios (e.g., distancia del hogar al trabajo y años totales trabajando). Asimismo, las variables y la arquitectura seleccionadas por la herramienta permitieron predecir la deserción laboral hasta un 88,92 % de exactitud.Universidad de Lima2019-12-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/463610.26439/interfases2019.n012.4636Interfases; No. 012 (2019); 32-48Interfases; Núm. 012 (2019); 32-48Interfases; n. 012 (2019); 32-481993-491210.26439/interfases2019.n012reponame:Revistas - Universidad de Limainstname:Universidad de Limainstacron:ULIMAspahttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/4636/4622Derechos de autor 2020 Interfasesinfo:eu-repo/semantics/openAccessoai:revistas.ulima.edu.pe:article/46362023-07-24T13:32:44Z |
dc.title.none.fl_str_mv |
Predicting job abandonment through genetic algorithms and artificial neural networks Predicción de deserción laboral utilizando un algoritmo genético y redes neuronales artificiales |
title |
Predicting job abandonment through genetic algorithms and artificial neural networks |
spellingShingle |
Predicting job abandonment through genetic algorithms and artificial neural networks Reyes-Huertas, Gonzalo Artificial neural network genetic algorithm employee turnover neural network architecture Red neuronal artificial algoritmo genético rotación de personal arquitectura de redes neuronales |
title_short |
Predicting job abandonment through genetic algorithms and artificial neural networks |
title_full |
Predicting job abandonment through genetic algorithms and artificial neural networks |
title_fullStr |
Predicting job abandonment through genetic algorithms and artificial neural networks |
title_full_unstemmed |
Predicting job abandonment through genetic algorithms and artificial neural networks |
title_sort |
Predicting job abandonment through genetic algorithms and artificial neural networks |
dc.creator.none.fl_str_mv |
Reyes-Huertas, Gonzalo |
author |
Reyes-Huertas, Gonzalo |
author_facet |
Reyes-Huertas, Gonzalo |
author_role |
author |
dc.subject.none.fl_str_mv |
Artificial neural network genetic algorithm employee turnover neural network architecture Red neuronal artificial algoritmo genético rotación de personal arquitectura de redes neuronales |
topic |
Artificial neural network genetic algorithm employee turnover neural network architecture Red neuronal artificial algoritmo genético rotación de personal arquitectura de redes neuronales |
description |
This research work aims to develop a tool to identify employees who might abandon their position, because job abandonment is considered an international problem. The proposed method consists of a genetic algorithm that allows identifying the significant variables and improving the architecture of an artificial neural network as a solution. The variables selected by the tool were similar to those collected from different studies but not all of them were considered in such studies (e.g., distance between home and workplace, and years of employment). Likewise, the variables and architecture selected by the tool allowed to predict job abandonment up to 88.92 % accuracy rate. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/4636 10.26439/interfases2019.n012.4636 |
url |
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/4636 |
identifier_str_mv |
10.26439/interfases2019.n012.4636 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/4636/4622 |
dc.rights.none.fl_str_mv |
Derechos de autor 2020 Interfases info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2020 Interfases |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Lima |
publisher.none.fl_str_mv |
Universidad de Lima |
dc.source.none.fl_str_mv |
Interfases; No. 012 (2019); 32-48 Interfases; Núm. 012 (2019); 32-48 Interfases; n. 012 (2019); 32-48 1993-4912 10.26439/interfases2019.n012 reponame:Revistas - Universidad de Lima instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
Revistas - Universidad de Lima |
collection |
Revistas - Universidad de Lima |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1841719305266266112 |
score |
12.8608675 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).