Early detection of the academic performance of university students from first year through discriminant analysis
Descripción del Articulo
This work aims to identify students who would only pass at most two out of five enrolled courses from semester 2016-2 of the General Studies Program of Universidad de Lima. The study is based on predictive models constructed with data collected on semester 2016-1 through discriminant analysis. The s...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2017 |
| Institución: | Universidad de Lima |
| Repositorio: | Revistas - Universidad de Lima |
| Lenguaje: | español |
| OAI Identifier: | oai:ojs.pkp.sfu.ca:article/1791 |
| Enlace del recurso: | https://revistas.ulima.edu.pe/index.php/Ingenieria_industrial/article/view/1791 |
| Nivel de acceso: | acceso abierto |
| Sumario: | This work aims to identify students who would only pass at most two out of five enrolled courses from semester 2016-2 of the General Studies Program of Universidad de Lima. The study is based on predictive models constructed with data collected on semester 2016-1 through discriminant analysis. The student’s population was divided in three domains of study. Then, independent predictive models for academic performance were constructed using Fisher’s classification functions which were evaluated by performance indicators and the Receiver Operating Characteristic curve (ROC). |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).