Early detection of the academic performance of university students from first year through discriminant analysis

Descripción del Articulo

This work aims to identify students who would only pass at most two out of five enrolled courses from semester 2016-2 of the General Studies Program of Universidad de Lima. The study is based on predictive models constructed with data collected on semester 2016-1 through discriminant analysis. The s...

Descripción completa

Detalles Bibliográficos
Autores: Saavedra-Sánchez-Dávila, Lutzgardo, Ramos-Ramírez, Julio César, Mitacc-Meza, Máximo, Del-Águila-Ríos, Víctor Ricardo
Formato: artículo
Fecha de Publicación:2017
Institución:Universidad de Lima
Repositorio:Revistas - Universidad de Lima
Lenguaje:español
OAI Identifier:oai:ojs.pkp.sfu.ca:article/1791
Enlace del recurso:https://revistas.ulima.edu.pe/index.php/Ingenieria_industrial/article/view/1791
Nivel de acceso:acceso abierto
id REVULIMA_72fc96c00bb6f2ca4f9f8ceb72cea05d
oai_identifier_str oai:ojs.pkp.sfu.ca:article/1791
network_acronym_str REVULIMA
network_name_str Revistas - Universidad de Lima
repository_id_str
spelling Early detection of the academic performance of university students from first year through discriminant analysisDetección temprana del rendimiento académico de estudiantes universitarios de primer ciclo mediante el análisis discriminanteSaavedra-Sánchez-Dávila, LutzgardoRamos-Ramírez, Julio CésarMitacc-Meza, MáximoDel-Águila-Ríos, Víctor RicardoThis work aims to identify students who would only pass at most two out of five enrolled courses from semester 2016-2 of the General Studies Program of Universidad de Lima. The study is based on predictive models constructed with data collected on semester 2016-1 through discriminant analysis. The student’s population was divided in three domains of study. Then, independent predictive models for academic performance were constructed using Fisher’s classification functions which were evaluated by performance indicators and the Receiver Operating Characteristic curve (ROC).En este estudio se ha procurado identificar a los ingresantes que aprobarían a lo más dos de los cinco cursos en los que se matricularon para el semestre 2016-2 del Programa de Estudios Generales de la Universidad de Lima. Dicha identificación se basó en modelos de predicción, construidos con datos del semestre 2016-1 mediante el uso de análisis discriminante. La población de ingresantes se dividió en tres dominios de estudio y se construyeron modelos independientes de predicción para el rendimiento académico utilizando las funciones de clasificación de Fisher, evaluadas mediante los indicadores de rendimiento y la curva Receiver Operating Characteristic (ROC).Universidad de Lima2017-12-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ulima.edu.pe/index.php/Ingenieria_industrial/article/view/179110.26439/ing.ind2017.n035.1791Ingeniería Industrial; No. 035 (2017); 77-98Ingeniería Industrial; Núm. 035 (2017); 77-982523-63261025-992910.26439/ing.ind2017.n035reponame:Revistas - Universidad de Limainstname:Universidad de Limainstacron:ULIMAspahttps://revistas.ulima.edu.pe/index.php/Ingenieria_industrial/article/view/1791/1807info:eu-repo/semantics/openAccessoai:ojs.pkp.sfu.ca:article/17912023-07-21T20:49:45Z
dc.title.none.fl_str_mv Early detection of the academic performance of university students from first year through discriminant analysis
Detección temprana del rendimiento académico de estudiantes universitarios de primer ciclo mediante el análisis discriminante
title Early detection of the academic performance of university students from first year through discriminant analysis
spellingShingle Early detection of the academic performance of university students from first year through discriminant analysis
Saavedra-Sánchez-Dávila, Lutzgardo
title_short Early detection of the academic performance of university students from first year through discriminant analysis
title_full Early detection of the academic performance of university students from first year through discriminant analysis
title_fullStr Early detection of the academic performance of university students from first year through discriminant analysis
title_full_unstemmed Early detection of the academic performance of university students from first year through discriminant analysis
title_sort Early detection of the academic performance of university students from first year through discriminant analysis
dc.creator.none.fl_str_mv Saavedra-Sánchez-Dávila, Lutzgardo
Ramos-Ramírez, Julio César
Mitacc-Meza, Máximo
Del-Águila-Ríos, Víctor Ricardo
author Saavedra-Sánchez-Dávila, Lutzgardo
author_facet Saavedra-Sánchez-Dávila, Lutzgardo
Ramos-Ramírez, Julio César
Mitacc-Meza, Máximo
Del-Águila-Ríos, Víctor Ricardo
author_role author
author2 Ramos-Ramírez, Julio César
Mitacc-Meza, Máximo
Del-Águila-Ríos, Víctor Ricardo
author2_role author
author
author
description This work aims to identify students who would only pass at most two out of five enrolled courses from semester 2016-2 of the General Studies Program of Universidad de Lima. The study is based on predictive models constructed with data collected on semester 2016-1 through discriminant analysis. The student’s population was divided in three domains of study. Then, independent predictive models for academic performance were constructed using Fisher’s classification functions which were evaluated by performance indicators and the Receiver Operating Characteristic curve (ROC).
publishDate 2017
dc.date.none.fl_str_mv 2017-12-21
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ulima.edu.pe/index.php/Ingenieria_industrial/article/view/1791
10.26439/ing.ind2017.n035.1791
url https://revistas.ulima.edu.pe/index.php/Ingenieria_industrial/article/view/1791
identifier_str_mv 10.26439/ing.ind2017.n035.1791
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ulima.edu.pe/index.php/Ingenieria_industrial/article/view/1791/1807
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Lima
publisher.none.fl_str_mv Universidad de Lima
dc.source.none.fl_str_mv Ingeniería Industrial; No. 035 (2017); 77-98
Ingeniería Industrial; Núm. 035 (2017); 77-98
2523-6326
1025-9929
10.26439/ing.ind2017.n035
reponame:Revistas - Universidad de Lima
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str Revistas - Universidad de Lima
collection Revistas - Universidad de Lima
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1847425934582349824
score 13.402391
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).