TÉCNICAS DE MACHINE LEARNING APLICADAS A LA INTERPRETACIÓN DE DATOS DE MERCADO

Descripción del Articulo

La aplicación de técnicas de machine learning en la interpretación de datos de mercado ha sido el foco de este estudio, es por ello que el objetivo es explorar cómo estas técnicas son utilizadas por diversas empresas en diferentes sectores, como telecomunicaciones, alimentos, cosméticos y tecnología...

Descripción completa

Detalles Bibliográficos
Autores: Andrade Vera, Silvia Andrea, Zambrano Segovia, Mario Marlon, Zambrano Cevillano, Allison Nicolle, Morales Ponce, Valeria Lilibeth
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Alas Peruanas
Repositorio:Revistas - Universidad Alas Peruanas
Lenguaje:español
OAI Identifier:oai:revistas.uap.edu.pe:article/2615
Enlace del recurso:http://revistas.uap.edu.pe/ojs/index.php/CYD/article/view/2615
Nivel de acceso:acceso abierto
Descripción
Sumario:La aplicación de técnicas de machine learning en la interpretación de datos de mercado ha sido el foco de este estudio, es por ello que el objetivo es explorar cómo estas técnicas son utilizadas por diversas empresas en diferentes sectores, como telecomunicaciones, alimentos, cosméticos y tecnología, para mejorar sus operaciones y tomar decisiones estratégicas. A través de una revisión detallada de casos de estudio y análisis de resultados, se encontró que el machine learning supervisado ha permitido una segmentación de clientes más precisa y una personalización efectiva de servicios, con aumentos significativos en la lealtad del cliente y la eficiencia operativa, alcanzando hasta un 12% y un 20%, respectivamente. Además, los modelos de regresión han mejorado la predicción de la demanda y optimizado las operaciones, logrando reducciones de hasta un 5% en los costos de inventario y un aumento del 10% en la satisfacción del cliente. Por último, el machine learning no supervisado ha revelado patrones y tendencias importantes en grandes conjuntos de datos sin etiquetar en diversos sectores, contribuyendo a aumentos del 20% en la satisfacción del usuario y hasta un 35% en las ventas.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).