Exportación Completada — 

Structural Evaluation and Predictive Modeling of Flexible Pavement in Rural Areas: A Case Study on the Puente Palca – Palca Road

Descripción del Articulo

This study aims to develop a predictive model for evaluating the structural condition of the asphalt layer and its impact on the serviceability of flexible pavement in the Puente Palca–Palca road, Huancavelica, Peru. The research focuses on 18 selected points along a 3-kilometer segment, employing t...

Descripción completa

Detalles Bibliográficos
Autor: Cárdenas Capcha, Jesús
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo
Repositorio:Revista de investigación científica y tecnológica Llamkasun
Lenguaje:español
OAI Identifier:oai:ojs2.llamkasun.unat.edu.pe:article/132
Enlace del recurso:https://llamkasun.unat.edu.pe/index.php/revista/article/view/132
Nivel de acceso:acceso abierto
Materia:Modelo predictivo
Condición estructural
Pavimento flexible
Mantenimiento preventivo
Vida útil del pavimento
Predictive model
Structural condition
Flexible pavement
Preventive maintenance
Pavement lifespan
Descripción
Sumario:This study aims to develop a predictive model for evaluating the structural condition of the asphalt layer and its impact on the serviceability of flexible pavement in the Puente Palca–Palca road, Huancavelica, Peru. The research focuses on 18 selected points along a 3-kilometer segment, employing techniques such as deflectometry, macrotexture analysis, skid resistance (CRD), degree of compaction, and the International Roughness Index (IRI). The study follows a quantitative, non-experimental, correlational-explanatory design, using non-linear regression models and multivariable analysis to predict the pavement's lifespan and functional capacity. The results indicate that compaction significantly affects deflectometry (R = 0.543), while asphalt content inversely influences macrotexture (R² = 0.5648). A critical reduction in surface texture (<1.0 mm) occurs when asphalt content exceeds 4.2%. Heavy traffic and climatic conditions further accelerate structural degradation, reducing pavement lifespan to 10-12 years without intervention. However, the predictive model extends this lifespan to 15 years, optimizing resources and lowering maintenance costs by 20%. The conclusion emphasizes that the developed predictive model for structural condition significantly impacts flexible pavement serviceability, improving its lifespan by 3-5 years and reducing repair costs, thereby enhancing safety and functionality in Huancavelica.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).