Thanatomicrobiome and artificial intelligence: forensic microbiology today

Descripción del Articulo

Forensic microbiology enables, among other applications, the estimation of the post-mortem interval (PMI), the identification of individuals, and the location of crime scenes through microbiome analysis and the geolocation of biological remains. Artificial intelligence (AI), together with new sequen...

Descripción completa

Detalles Bibliográficos
Autores: Baltazar Ramos, Javier Iván, Cosme García , Lizbeth, Denis Rodriguez, Edmundo
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad de San Martín de Porres
Repositorio:Horizonte médico
Lenguaje:español
OAI Identifier:oai:horizontemedico.usmp.edu.pe:article/3758
Enlace del recurso:https://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/3758
Nivel de acceso:acceso abierto
Materia:Microbiología Forense
Cambios Post Mortem
Inteligencia Artificial
Aprendizaje Profundo
Cadáver
Forensic Microbiology
Postmortem Changes
Artificial Intelligence
Deep Learning
Cadaver
id REVHM_cff1829916f21d9c466a60d9b9522e3b
oai_identifier_str oai:horizontemedico.usmp.edu.pe:article/3758
network_acronym_str REVHM
network_name_str Horizonte médico
repository_id_str
dc.title.none.fl_str_mv Thanatomicrobiome and artificial intelligence: forensic microbiology today
Tanatomicrobioma e Inteligencia Artificial: la Microbiología Forense de Hoy
es
title Thanatomicrobiome and artificial intelligence: forensic microbiology today
spellingShingle Thanatomicrobiome and artificial intelligence: forensic microbiology today
Baltazar Ramos, Javier Iván
Microbiología Forense
Cambios Post Mortem
Inteligencia Artificial
Aprendizaje Profundo
Cadáver
Forensic Microbiology
Postmortem Changes
Artificial Intelligence
Deep Learning
Cadaver
title_short Thanatomicrobiome and artificial intelligence: forensic microbiology today
title_full Thanatomicrobiome and artificial intelligence: forensic microbiology today
title_fullStr Thanatomicrobiome and artificial intelligence: forensic microbiology today
title_full_unstemmed Thanatomicrobiome and artificial intelligence: forensic microbiology today
title_sort Thanatomicrobiome and artificial intelligence: forensic microbiology today
dc.creator.none.fl_str_mv Baltazar Ramos, Javier Iván
Cosme García , Lizbeth
Denis Rodriguez, Edmundo
author Baltazar Ramos, Javier Iván
author_facet Baltazar Ramos, Javier Iván
Cosme García , Lizbeth
Denis Rodriguez, Edmundo
author_role author
author2 Cosme García , Lizbeth
Denis Rodriguez, Edmundo
author2_role author
author
dc.subject.none.fl_str_mv Microbiología Forense
Cambios Post Mortem
Inteligencia Artificial
Aprendizaje Profundo
Cadáver
Forensic Microbiology
Postmortem Changes
Artificial Intelligence
Deep Learning
Cadaver
topic Microbiología Forense
Cambios Post Mortem
Inteligencia Artificial
Aprendizaje Profundo
Cadáver
Forensic Microbiology
Postmortem Changes
Artificial Intelligence
Deep Learning
Cadaver
description Forensic microbiology enables, among other applications, the estimation of the post-mortem interval (PMI), the identification of individuals, and the location of crime scenes through microbiome analysis and the geolocation of biological remains. Artificial intelligence (AI), together with new sequencing techniques, has revolutionized this field, markedly improving the accuracy and speed of forensic analyses. In this study, a systematic review was conducted following PRISMA guidelines. Databases such as PubMed, Scopus, Web of Science, and Google Scholar were searched using keywords related to forensic microbiology, IA, and PMI. Inclusion criteria included studies published in English or Spanish, regardless of the publication date. Exclusion criteria included duplicate studies or those that did not address the thanatomicrobiome analysis using AI tools. After the search and selection process, 20 articles published between 2016 and 2024 were analyzed. The f indings show that some machine learning models, such as Random Forest (RF) and Convolutional Neural Networks (CNN), provide relatively accurate estimates of the PMI. Recent studies focusing on the thanatomicrobiome are emerging as a promising tool in the forensic field, as this microbiome is unique and individualizing. These characteristics render it useful in the various stages of human identification and geolocation in criminal investigations. However, the review underscores the need for studies with larger sample sizes and for exploring the role of microorganisms beyond bacteria, in order to broaden and enhance the research landscape in this emerging field.  
publishDate 2025
dc.date.none.fl_str_mv 2025-09-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/3758
10.24265/horizmed.2025.v25n3.15
url https://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/3758
identifier_str_mv 10.24265/horizmed.2025.v25n3.15
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/3758/2341
dc.rights.none.fl_str_mv Derechos de autor 2025 Horizonte Médico (Lima)
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2025 Horizonte Médico (Lima)
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de San Martín de Porres. Facultad de Medicina Humana
publisher.none.fl_str_mv Universidad de San Martín de Porres. Facultad de Medicina Humana
dc.source.none.fl_str_mv Horizonte Médico (Lima); Vol. 25 No. 3 (2025): Julio-setiembre; e3758
Horizonte Médico (Lima); Vol. 25 Núm. 3 (2025): Julio-setiembre; e3758
Horizonte Médico (Lima); v. 25 n. 3 (2025): Julio-setiembre; e3758
2227-3530
1727-558X
reponame:Horizonte médico
instname:Universidad de San Martín de Porres
instacron:USMP
instname_str Universidad de San Martín de Porres
instacron_str USMP
institution USMP
reponame_str Horizonte médico
collection Horizonte médico
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1843452421177606144
spelling Thanatomicrobiome and artificial intelligence: forensic microbiology todayTanatomicrobioma e Inteligencia Artificial: la Microbiología Forense de Hoy esBaltazar Ramos, Javier IvánCosme García , LizbethDenis Rodriguez, EdmundoMicrobiología Forense Cambios Post Mortem Inteligencia Artificial Aprendizaje ProfundoCadáverForensic Microbiology Postmortem Changes Artificial Intelligence Deep LearningCadaverForensic microbiology enables, among other applications, the estimation of the post-mortem interval (PMI), the identification of individuals, and the location of crime scenes through microbiome analysis and the geolocation of biological remains. Artificial intelligence (AI), together with new sequencing techniques, has revolutionized this field, markedly improving the accuracy and speed of forensic analyses. In this study, a systematic review was conducted following PRISMA guidelines. Databases such as PubMed, Scopus, Web of Science, and Google Scholar were searched using keywords related to forensic microbiology, IA, and PMI. Inclusion criteria included studies published in English or Spanish, regardless of the publication date. Exclusion criteria included duplicate studies or those that did not address the thanatomicrobiome analysis using AI tools. After the search and selection process, 20 articles published between 2016 and 2024 were analyzed. The f indings show that some machine learning models, such as Random Forest (RF) and Convolutional Neural Networks (CNN), provide relatively accurate estimates of the PMI. Recent studies focusing on the thanatomicrobiome are emerging as a promising tool in the forensic field, as this microbiome is unique and individualizing. These characteristics render it useful in the various stages of human identification and geolocation in criminal investigations. However, the review underscores the need for studies with larger sample sizes and for exploring the role of microorganisms beyond bacteria, in order to broaden and enhance the research landscape in this emerging field.  La microbiología forense permite, entre otras aplicaciones, la estimación del intervalo post mortem (PMI), la identificación de individuos y la localización de escenas del crimen mediante el análisis de microbiomas y la geolocalización de restos biológicos. La inteligencia artificial (IA), junto con las nuevas técnicas de secuenciación, ha revolucionado este campo, mejorando significativamente la precisión y la rapidez de los análisis forenses. En la presente investigación se llevó a cabo una revisión sistemática, siguiendo las directrices PRISMA. Se consultaron bases de datos como PubMed, Scopus, Web of Science y Google Scholar, utilizando palabras clave relacionadas con microbiología forense, IA y PMI. Se aplicaron criterios de inclusión, como la publicación de los estudios en inglés o español y sin restricción temporal, y de exclusión, como duplicidad de publicaciones o estudios que no abordaban el análisis del tanatomicrobioma mediante herramientas de IA. Tras el proceso de búsqueda y selección, se analizaron 20 artículos publicados entre 2016 y 2024. Los hallazgos revelan que algunos modelos de aprendizaje automático, como Random Forest (RF) y las Redes Neuronales Convolucionales (CNN), permiten estimaciones relativamente precisas del PMI. Los estudios recientes enfocados en el tanatomicrobioma se perfilan como una herramienta prometedora en el ámbito forense, debido a que este microbioma es único e individualizante, lo que lo convierte en un recurso útil en las distintas etapas de la identificación humana y en los procesos de geolocalización dentro de investigaciones criminales. Sin embargo, se resalta la necesidad de realizar estudios con un mayor número de muestras y de explorar la participación de otros microorganismos, además de las bacterias, con el fin de ampliar y enriquecer el panorama de investigación en esta área emergente.Universidad de San Martín de Porres. Facultad de Medicina Humana2025-09-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/375810.24265/horizmed.2025.v25n3.15Horizonte Médico (Lima); Vol. 25 No. 3 (2025): Julio-setiembre; e3758Horizonte Médico (Lima); Vol. 25 Núm. 3 (2025): Julio-setiembre; e3758Horizonte Médico (Lima); v. 25 n. 3 (2025): Julio-setiembre; e37582227-35301727-558Xreponame:Horizonte médicoinstname:Universidad de San Martín de Porresinstacron:USMPspahttps://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/3758/2341Derechos de autor 2025 Horizonte Médico (Lima)https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:horizontemedico.usmp.edu.pe:article/37582025-09-12T21:01:55Z
score 13.7869
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).