Proposal of combined therapeutic strategies for KRAS in non-small cell lung cancer based on an in silico analysis

Descripción del Articulo

Objective: Patients with non-small cell lung cancer positive for the anaplastic lymphoma kinase (ALK+) gene mutation who also have mutations in the Kirsten rat sarcoma (KRAS) gene, such as KRAS G12C, are showing resistance to both anaplastic lymphoma kinase (ALK) gene and KRAS inhibitors. Therefore,...

Descripción completa

Detalles Bibliográficos
Autores: Chapilliquen Ramírez, Daniela, Faya Castillo, Juan, Zapata Dongo, Richard, Moy Diaz, Brenda, Infante Varillas, Stefany
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad de San Martín de Porres
Repositorio:Horizonte médico
Lenguaje:español
inglés
OAI Identifier:oai:horizontemedico.usmp.edu.pe:article/2518
Enlace del recurso:https://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/2518
Nivel de acceso:acceso abierto
Materia:Cáncer de Pulmón de Células no Pequeñas
ALK Quinasa
Acoplamiento Molecular
Carcinoma, Non-Small-Cell Lung
Anaplastic Lymphoma Kinase
Molecular Docking Simulation
id REVHM_8794e8d875a344114fdc20aa596d1518
oai_identifier_str oai:horizontemedico.usmp.edu.pe:article/2518
network_acronym_str REVHM
network_name_str Horizonte médico
repository_id_str
dc.title.none.fl_str_mv Proposal of combined therapeutic strategies for KRAS in non-small cell lung cancer based on an in silico analysis
Propuesta de estrategias terapéuticas combinadas para KRAS en cáncer de pulmón de células no pequeñas a partir de análisis in silico
title Proposal of combined therapeutic strategies for KRAS in non-small cell lung cancer based on an in silico analysis
spellingShingle Proposal of combined therapeutic strategies for KRAS in non-small cell lung cancer based on an in silico analysis
Chapilliquen Ramírez, Daniela
Cáncer de Pulmón de Células no Pequeñas
ALK Quinasa
Acoplamiento Molecular
Carcinoma, Non-Small-Cell Lung
Anaplastic Lymphoma Kinase
Molecular Docking Simulation
title_short Proposal of combined therapeutic strategies for KRAS in non-small cell lung cancer based on an in silico analysis
title_full Proposal of combined therapeutic strategies for KRAS in non-small cell lung cancer based on an in silico analysis
title_fullStr Proposal of combined therapeutic strategies for KRAS in non-small cell lung cancer based on an in silico analysis
title_full_unstemmed Proposal of combined therapeutic strategies for KRAS in non-small cell lung cancer based on an in silico analysis
title_sort Proposal of combined therapeutic strategies for KRAS in non-small cell lung cancer based on an in silico analysis
dc.creator.none.fl_str_mv Chapilliquen Ramírez, Daniela
Faya Castillo, Juan
Zapata Dongo, Richard
Moy Diaz, Brenda
Infante Varillas, Stefany
author Chapilliquen Ramírez, Daniela
author_facet Chapilliquen Ramírez, Daniela
Faya Castillo, Juan
Zapata Dongo, Richard
Moy Diaz, Brenda
Infante Varillas, Stefany
author_role author
author2 Faya Castillo, Juan
Zapata Dongo, Richard
Moy Diaz, Brenda
Infante Varillas, Stefany
author2_role author
author
author
author
dc.subject.none.fl_str_mv Cáncer de Pulmón de Células no Pequeñas
ALK Quinasa
Acoplamiento Molecular
Carcinoma, Non-Small-Cell Lung
Anaplastic Lymphoma Kinase
Molecular Docking Simulation
topic Cáncer de Pulmón de Células no Pequeñas
ALK Quinasa
Acoplamiento Molecular
Carcinoma, Non-Small-Cell Lung
Anaplastic Lymphoma Kinase
Molecular Docking Simulation
description Objective: Patients with non-small cell lung cancer positive for the anaplastic lymphoma kinase (ALK+) gene mutation who also have mutations in the Kirsten rat sarcoma (KRAS) gene, such as KRAS G12C, are showing resistance to both anaplastic lymphoma kinase (ALK) gene and KRAS inhibitors. Therefore, the interaction between ALK inhibitors and KRAS was analyzed to suggest a synergy between them. Materials and methods: The study performed homology modeling of the KRASwt, KRAS G12C and ALKwt structures. Subsequently, molecular dockings were carried out to determine the binding energy of ALK and KRAS inhibitors and to evaluate the possible interaction of ALK inhibitors with KRAS and the KRAS G12C structure. Finally, the expression in the RAS/MEK pathway was analyzed using the Western Blot technique. Results: The binding energy values show the potential interaction of ALKwt inhibitors, such as crizotinib and alectinib, with the KRASwt and KRAS G12C structures. The binding of crizotinib to KRASwt and KRAS G12C, respectively, indicates interaction energy values (42.77 kcal/mol and 46.20 kcal/mol) which are very similar to those obtained between crizotinib and ALK (42.37 kcal/mol). In turn, alectinib bound to the same site as drugs targeting KRAS and KRAS G12C, and showed interaction energy values (51.74 kcal/mol and 54.69 kcal/mol, respectively) higher than those obtained with ALK (44.94 kcal/mol). Finally, a significant decrease in RAS expression within the RAS/MEK pathway was observed in ALK+ and ALK 1196M lung cancer cell lines treated with crizotinib and alectinib. Conclusions: In silico techniques of this study demonstrate the potential binding of ALK inhibitors (crizotinib and alectinib) to the KRAS structure. In addition, this allows suggesting a possible combined therapy between KRAS and ALK inhibitors for cases of coexistence of both mutations that can be assessed in subsequent trials with cell lines.
publishDate 2024
dc.date.none.fl_str_mv 2024-06-27
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/2518
10.24265/horizmed.2024.v24n2.07
url https://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/2518
identifier_str_mv 10.24265/horizmed.2024.v24n2.07
dc.language.none.fl_str_mv spa
eng
language spa
eng
dc.relation.none.fl_str_mv https://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/2518/1803
https://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/2518/1818
https://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/2518/2026
https://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/2518/1920
https://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/2518/1965
dc.rights.none.fl_str_mv Derechos de autor 2024 Horizonte Médico (Lima)
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2024 Horizonte Médico (Lima)
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/xml
text/html
application/pdf
text/xml
dc.publisher.none.fl_str_mv Universidad de San Martín de Porres. Facultad de Medicina Humana
publisher.none.fl_str_mv Universidad de San Martín de Porres. Facultad de Medicina Humana
dc.source.none.fl_str_mv Horizonte Médico (Lima); Vol. 24 No. 2 (2024): Abril-Junio; e2518
Horizonte Médico (Lima); Vol. 24 Núm. 2 (2024): Abril-Junio; e2518
Horizonte Médico (Lima); v. 24 n. 2 (2024): Abril-Junio; e2518
2227-3530
1727-558X
reponame:Horizonte médico
instname:Universidad de San Martín de Porres
instacron:USMP
instname_str Universidad de San Martín de Porres
instacron_str USMP
institution USMP
reponame_str Horizonte médico
collection Horizonte médico
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1841556140489441280
spelling Proposal of combined therapeutic strategies for KRAS in non-small cell lung cancer based on an in silico analysis Propuesta de estrategias terapéuticas combinadas para KRAS en cáncer de pulmón de células no pequeñas a partir de análisis in silicoChapilliquen Ramírez, Daniela Faya Castillo, JuanZapata Dongo, RichardMoy Diaz, BrendaInfante Varillas, StefanyCáncer de Pulmón de Células no PequeñasALK Quinasa Acoplamiento MolecularCarcinoma, Non-Small-Cell Lung Anaplastic Lymphoma Kinase Molecular Docking SimulationObjective: Patients with non-small cell lung cancer positive for the anaplastic lymphoma kinase (ALK+) gene mutation who also have mutations in the Kirsten rat sarcoma (KRAS) gene, such as KRAS G12C, are showing resistance to both anaplastic lymphoma kinase (ALK) gene and KRAS inhibitors. Therefore, the interaction between ALK inhibitors and KRAS was analyzed to suggest a synergy between them. Materials and methods: The study performed homology modeling of the KRASwt, KRAS G12C and ALKwt structures. Subsequently, molecular dockings were carried out to determine the binding energy of ALK and KRAS inhibitors and to evaluate the possible interaction of ALK inhibitors with KRAS and the KRAS G12C structure. Finally, the expression in the RAS/MEK pathway was analyzed using the Western Blot technique. Results: The binding energy values show the potential interaction of ALKwt inhibitors, such as crizotinib and alectinib, with the KRASwt and KRAS G12C structures. The binding of crizotinib to KRASwt and KRAS G12C, respectively, indicates interaction energy values (42.77 kcal/mol and 46.20 kcal/mol) which are very similar to those obtained between crizotinib and ALK (42.37 kcal/mol). In turn, alectinib bound to the same site as drugs targeting KRAS and KRAS G12C, and showed interaction energy values (51.74 kcal/mol and 54.69 kcal/mol, respectively) higher than those obtained with ALK (44.94 kcal/mol). Finally, a significant decrease in RAS expression within the RAS/MEK pathway was observed in ALK+ and ALK 1196M lung cancer cell lines treated with crizotinib and alectinib. Conclusions: In silico techniques of this study demonstrate the potential binding of ALK inhibitors (crizotinib and alectinib) to the KRAS structure. In addition, this allows suggesting a possible combined therapy between KRAS and ALK inhibitors for cases of coexistence of both mutations that can be assessed in subsequent trials with cell lines.Objetivo: Los pacientes con cáncer de pulmón de células no pequeñas positivas a la mutación del gen linfoma anaplásico quinasa (ALK+) que, además, presentan mutaciones en el gen Kirsten rat sarcoma (KRAS), como KRASG12C, están mostrando resistencia tanto a inhibidores del gen linfoma anaplásico quinasa (ALK) como de KRAS. Por ello, se analizó la interacción de los inhibidores de ALK con KRAS, para sugerir una sinergia entre ambos. Materiales y métodos: En el estudio se realizó un modelado por homología de las estructuras KRASwt, KRASG12C y ALKwt. Posteriormente, se realizaron acoplamientos moleculares para determinar la energía de unión de los inhibidores de ALK y de KRAS, y evaluar la posible interacción entre los inhibidores de ALK con KRAS y la estructura KRASG12C. Finalmente, se analizó la expresión en la vía de proliferación celular de las proteínas rat sarcoma/quinasa regulada por señales extracelulares (vía RAS/MEK) mediante la técnica de Western blot. Resultados: Los valores de energía de unión muestran la posibilidad de interacción de los inhibidores de ALKwt, como crizotinib y alectinib, con las estructuras de KRASwt y KRASG12C. Los acoplamientos entre crizotinib con KRASwt y KRASG12C, respectivamente, muestran valores de energía de interacción (42,77 kcal/mol y 46,20 kcal/mol) muy similares a los obtenidos entre crizotinib y ALK (42,37 kcal/mol). A su vez, alectinib se acopló en el mismo sitio que los fármacos específicos de KRAS y KRASG12C, y presentaron valores de energía de interacción (51,74 kcal/mol y 54,69 kcal/mol, respectivamente) superiores a los obtenidos con ALK (44,94 kcal/mol). Finalmente, la expresión de la vía RAS/MEK nos mostró una disminución significativa de la expresión de RAS en líneas celulares de cáncer de pulmón ALK+ y ALKL1196M tratadas con crizotinib y alectinib. Conclusiones: Las técnicas in silico de este estudio muestran la posibilidad de acoplamiento entre los inhibidores de ALK (crizotinib y alectinib) con la estructura de KRAS. Esto permite sugerir una posible terapia combinada entre inhibidores de KRAS y ALK para los casos de coexistencia de ambas mutaciones, que puede evaluarse en posteriores ensayos con líneas celulares. Universidad de San Martín de Porres. Facultad de Medicina Humana2024-06-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/xmltext/htmlapplication/pdftext/xmlhttps://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/251810.24265/horizmed.2024.v24n2.07Horizonte Médico (Lima); Vol. 24 No. 2 (2024): Abril-Junio; e2518Horizonte Médico (Lima); Vol. 24 Núm. 2 (2024): Abril-Junio; e2518Horizonte Médico (Lima); v. 24 n. 2 (2024): Abril-Junio; e25182227-35301727-558Xreponame:Horizonte médicoinstname:Universidad de San Martín de Porresinstacron:USMPspaenghttps://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/2518/1803https://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/2518/1818https://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/2518/2026https://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/2518/1920https://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/2518/1965Derechos de autor 2024 Horizonte Médico (Lima)https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:horizontemedico.usmp.edu.pe:article/25182024-06-27T14:06:17Z
score 13.448538
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).