Exportación Completada — 

Stock market index prediction using artificial neural network

Descripción del Articulo

In this study the ability of artificial neural network (ANN)in forecasting the daily NASDAQ stock exchange rate was investigated. Several feed forward ANNs that were trained by the back propagation algorithm have been assessed. The methodology used in this study considered the short-term historical...

Descripción completa

Detalles Bibliográficos
Autores: Hedayati Moghaddam, Amin, Hedayati Moghaddam, Moein, Esfandyari, Morteza
Formato: artículo
Fecha de Publicación:2016
Institución:Universidad ESAN
Repositorio:Revistas - Universidad ESAN
Lenguaje:inglés
OAI Identifier:oai:ojs.pkp.sfu.ca:article/142
Enlace del recurso:https://revistas.esan.edu.pe/index.php/jefas/article/view/142
Nivel de acceso:acceso abierto
Materia:NASDAQ
ANN
Prediction
id REVESAN_8c734eaae4268c8e14121ca0effa44a1
oai_identifier_str oai:ojs.pkp.sfu.ca:article/142
network_acronym_str REVESAN
network_name_str Revistas - Universidad ESAN
repository_id_str .
spelling Stock market index prediction using artificial neural networkHedayati Moghaddam, Amin Hedayati Moghaddam, Moein Esfandyari, Morteza NASDAQANNPredictionIn this study the ability of artificial neural network (ANN)in forecasting the daily NASDAQ stock exchange rate was investigated. Several feed forward ANNs that were trained by the back propagation algorithm have been assessed. The methodology used in this study considered the short-term historical stock prices as well as the day of week as inputs. Daily stock exchange rates of NASDAQ from January 28, 2015 to 18 June, 2015 are used to develop a robust model. First 70 days (January 28 to March 7) are selected as training dataset and the last 29 days are used for testing the model prediction ability. Networks for NASDAQ index prediction for two type of input dataset (four prior days and nine prior days) were developed and validated. Doi:  https://doi.org/10.1016/j.jefas.2016.07.​002Universidad ESAN2016-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer-reviewed Articleapplication/pdfhttps://revistas.esan.edu.pe/index.php/jefas/article/view/142Journal of Economics, Finance and Administrative Science; Vol. 21 No. 41 (2016): July - December; 89-93Journal of Economics, Finance and Administrative Science; Vol. 21 Núm. 41 (2016): July - December; 89-932218-06482077-1886reponame:Revistas - Universidad ESANinstname:Universidad ESANinstacron:ESANenghttps://revistas.esan.edu.pe/index.php/jefas/article/view/142/112Copyright (c) 2016 Journal of Economics, Finance and Administrative Sciencehttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessoai:ojs.pkp.sfu.ca:article/1422021-08-17T23:25:53Z
dc.title.none.fl_str_mv Stock market index prediction using artificial neural network
title Stock market index prediction using artificial neural network
spellingShingle Stock market index prediction using artificial neural network
Hedayati Moghaddam, Amin
NASDAQ
ANN
Prediction
title_short Stock market index prediction using artificial neural network
title_full Stock market index prediction using artificial neural network
title_fullStr Stock market index prediction using artificial neural network
title_full_unstemmed Stock market index prediction using artificial neural network
title_sort Stock market index prediction using artificial neural network
dc.creator.none.fl_str_mv Hedayati Moghaddam, Amin
Hedayati Moghaddam, Moein
Esfandyari, Morteza
author Hedayati Moghaddam, Amin
author_facet Hedayati Moghaddam, Amin
Hedayati Moghaddam, Moein
Esfandyari, Morteza
author_role author
author2 Hedayati Moghaddam, Moein
Esfandyari, Morteza
author2_role author
author
dc.subject.none.fl_str_mv NASDAQ
ANN
Prediction
topic NASDAQ
ANN
Prediction
description In this study the ability of artificial neural network (ANN)in forecasting the daily NASDAQ stock exchange rate was investigated. Several feed forward ANNs that were trained by the back propagation algorithm have been assessed. The methodology used in this study considered the short-term historical stock prices as well as the day of week as inputs. Daily stock exchange rates of NASDAQ from January 28, 2015 to 18 June, 2015 are used to develop a robust model. First 70 days (January 28 to March 7) are selected as training dataset and the last 29 days are used for testing the model prediction ability. Networks for NASDAQ index prediction for two type of input dataset (four prior days and nine prior days) were developed and validated. Doi:  https://doi.org/10.1016/j.jefas.2016.07.​002
publishDate 2016
dc.date.none.fl_str_mv 2016-12-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.esan.edu.pe/index.php/jefas/article/view/142
url https://revistas.esan.edu.pe/index.php/jefas/article/view/142
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.esan.edu.pe/index.php/jefas/article/view/142/112
dc.rights.none.fl_str_mv Copyright (c) 2016 Journal of Economics, Finance and Administrative Science
https://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2016 Journal of Economics, Finance and Administrative Science
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad ESAN
publisher.none.fl_str_mv Universidad ESAN
dc.source.none.fl_str_mv Journal of Economics, Finance and Administrative Science; Vol. 21 No. 41 (2016): July - December; 89-93
Journal of Economics, Finance and Administrative Science; Vol. 21 Núm. 41 (2016): July - December; 89-93
2218-0648
2077-1886
reponame:Revistas - Universidad ESAN
instname:Universidad ESAN
instacron:ESAN
instname_str Universidad ESAN
instacron_str ESAN
institution ESAN
reponame_str Revistas - Universidad ESAN
collection Revistas - Universidad ESAN
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1842439105621786624
score 12.8608675
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).