A Machine Learning Tool with An Integrated Dataset Towards the Construction of An Early Warning System for Dengue in Zulia State, Venezuela

Descripción del Articulo

Introduction: The present study arises in response to the sustained increase in dengue outbreaks in Latin America, with special emphasis on the state of Zulia, Venezuela. This region, composed of 21 municipalities, is highly vulnerable to dengue transmission. Given this scenario, it is essential to...

Descripción completa

Detalles Bibliográficos
Autores: Cabrera, Maritza, Naranjo-Torres, José, Cabrera, Ángel, Zambrano, Lysien, Rodriguez-Morales, Alfonso J.
Formato: artículo
Fecha de Publicación:2025
Institución:Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
Repositorio:Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
Lenguaje:español
OAI Identifier:oai:cmhnaaa_ojs_cmhnaaa.cmhnaaa.org.pe:article/2815
Enlace del recurso:https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/2815
Nivel de acceso:acceso abierto
Materia:Dengue fever
Machine Learning
Epidemiology
Disease Outbreaks
Fiebre de Dengue
Aprendizaje automático
Epidemiologia, Laboratorio, Hemodiálisis
Brotes de enfermedades
Descripción
Sumario:Introduction: The present study arises in response to the sustained increase in dengue outbreaks in Latin America, with special emphasis on the state of Zulia, Venezuela. This region, composed of 21 municipalities, is highly vulnerable to dengue transmission. Given this scenario, it is essential to have tools that allow early detection of outbreaks and, thus, optimize prevention and public health intervention strategies. The main objective is to develop an early warning system for dengue outbreaks using machine learning (ML) techniques. Materials and methods: Several data sources are integrated: epidemiological information, meteorological parameters, El Niño and La Niña (Niño 3.4 Index), socioeconomic and demographic variables. Two ML models were used: Support Vector Machine for regression (SVM-R) and Gaussian Process Regression (GPR). Results: The predictions obtained showed remarkable agreement with the actual dates on which the outbreaks were recorded, warning of the onset of dengue 2 to 3 weeks in advance, depending on the locality. However, in certain municipalities the predictions were less accurate, a finding that agrees with previous studies. Conclusions: In conclusion, the integration of epidemiological, climatological, and socioeconomic variables using ML techniques is presented as a promising tool for establishing.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).