A Sequential Optimisation Framework for Adaptive Model Predictive Control in Robotics
Descripción del Articulo
State-of-the-art control and robotics challenges have long been tackled using model-based control methods like model predictive control (MPC) and reinforcement learning (RL). These methods excel in complex dynamic domains, such as manipulation tasks, but struggle with real-world issues like wear-and...
| Autor: | |
|---|---|
| Formato: | tesis doctoral |
| Fecha de Publicación: | 2023 |
| Institución: | Superintendencia Nacional de Educación Superior Universitaria |
| Repositorio: | Registro Nacional de Trabajos conducentes a Grados y Títulos - RENATI |
| Lenguaje: | inglés |
| OAI Identifier: | oai:renati.sunedu.gob.pe:renati/9331 |
| Enlace del recurso: | https://renati.sunedu.gob.pe/handle/sunedu/3694610 https://hdl.handle.net/2123/32053 |
| Nivel de acceso: | acceso abierto |
| Materia: | Robótica Control predictivo Control óptimo Estadística bayesiana Gauss, Modelo de https://purl.org/pe-repo/ocde/ford#2.02.02 |
| Sumario: | State-of-the-art control and robotics challenges have long been tackled using model-based control methods like model predictive control (MPC) and reinforcement learning (RL). These methods excel in complex dynamic domains, such as manipulation tasks, but struggle with real-world issues like wear-and-tear, uncalibrated sensors, and misspecifications. These factors often perturb system dynamics, leading to the 'reality gap' problem when robots transition from simulations to real-world environments. This work aims to bridge this gap by combining RL and control in a learning framework that adapts MPC to robot decisions, optimizing performance despite uncertainties in dynamics model parameters. This thesis presents three key contributions to robotics control. The first is a novel reward-based framework for refining stochastic Model Predictive Control (MPC). It utilizes Bayesian Optimization (BO) for efficient data handling and heteroscedastic noise, linking controller hyperparameters with expected rewards through a Gaussian Process (GP). This approach demonstrates success in simulated control environments and robotic tasks. The second contribution addresses the 'reality gap' in robotics, enhancing controller performance in real-world dynamics. It builds on the first by developing an adaptive stochastic MPC that optimizes hyperparameters while estimating physical parameter distributions, employing a randomized dynamics model. This method is validated in both simulations and with robotic manipulators. Finally, the thesis proposes an innovative alternative to BO, merging it with supervised classification for a surrogate-based optimization technique. This method adeptly adjusts control hyperparameters in the face of model uncertainty and noise, optimizing complex functions through a binary classifier. Tested on simulated control problems and manipulators, it offers a promising solution to complex robotics and control challenges. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).