INTEGRATION OPTIMIZATION - PREDICTIVE CONTROL AND APPLICATION A PLANT TENNESSEE EASTMAN
Descripción del Articulo
The predictive control (MPC) is an advanced control strategy widely used in industrial processes. MPC is also one of the most active areas of research in the theory of control. Subjects such as optimality, stability and robustness are well known, especially for linear systems. However, despite this...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2008 |
Institución: | Universidad Nacional Mayor de San Marcos |
Repositorio: | Revista UNMSM - Revista Peruana de Química e Ingeniería Química |
Lenguaje: | español |
OAI Identifier: | oai:ojs.csi.unmsm:article/4906 |
Enlace del recurso: | https://revistasinvestigacion.unmsm.edu.pe/index.php/quim/article/view/4906 |
Nivel de acceso: | acceso abierto |
Materia: | Predictive control Optimization Hierarchical control Optimal control of processes Plant Tennessee Eastman Control predictivo Optimización Control jerárquico Control óptimo de procesos Planta Tennessee Eastman |
Sumario: | The predictive control (MPC) is an advanced control strategy widely used in industrial processes. MPC is also one of the most active areas of research in the theory of control. Subjects such as optimality, stability and robustness are well known, especially for linear systems. However, despite this large adoption, both in the media industry and academics, little has been written about how these drivers are implemented in practice. This article tries to fill this gap, introducing the development of systems optimization and MPC, and discussing their integration into a hierarchical control structure. The proposed integrated control scheme is applied to the Tennessee Eastman plant, and the results show the effectiveness of the proposed strategy for optimal control of processes. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).