INTEGRATION OPTIMIZATION - PREDICTIVE CONTROL AND APPLICATION A PLANT TENNESSEE EASTMAN

Descripción del Articulo

The predictive control (MPC) is an advanced control strategy widely used in industrial processes. MPC is also one of the most active areas of research in the theory of control. Subjects such as optimality, stability and robustness are well known, especially for linear systems. However, despite this...

Descripción completa

Detalles Bibliográficos
Autores: Alvarez Toro, Luz A., Sotomayor, Oscar
Formato: artículo
Fecha de Publicación:2008
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revista UNMSM - Revista Peruana de Química e Ingeniería Química
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/4906
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/quim/article/view/4906
Nivel de acceso:acceso abierto
Materia:Predictive control
Optimization
Hierarchical control
Optimal control of processes
Plant Tennessee Eastman
Control predictivo
Optimización
Control jerárquico
Control óptimo de procesos
Planta Tennessee Eastman
Descripción
Sumario:The predictive control (MPC) is an advanced control strategy widely used in industrial processes. MPC is also one of the most active areas of research in the theory of control. Subjects such as optimality, stability and robustness are well known, especially for linear systems. However, despite this large adoption, both in the media industry and academics, little has been written about how these drivers are implemented in practice. This article tries to fill this gap, introducing the development of systems optimization and MPC, and discussing their integration into a hierarchical control structure. The proposed integrated control scheme is applied to the Tennessee Eastman plant, and the results show the effectiveness of the proposed strategy for optimal control of processes.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).