Matrix-assisted laser desorption ionization time-of-flight mass spectrometry combined with chemometrics for protein profiling and classification of boiled and extruded quinoa from conventional and organic crops
Descripción del Articulo
Quinoa is an Andean crop that stands out as a high-quality protein-rich and gluten-free food. However, its increasing popularity exposes quinoa products to the potential risk of adulteration with cheaper cereals. Consequently, there is a need for novel methodologies to accurately characterize the co...
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Instituto Nacional de Innovación Agraria |
Repositorio: | INIA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:null:20.500.12955/2583 |
Enlace del recurso: | https://hdl.handle.net/20.500.12955/2583 https://doi.org/10.3390/foods13121906 |
Nivel de acceso: | acceso abierto |
Materia: | Boiling Conventional Farming Extrusion Maldiquant MALDI-TOF-MS Multivariate Data Analysis Organic Farming Proteins Quinoa https://purl.org/pe-repo/ocde/ford#2.11.00 Ebullición Conventional farming Agricultura convencional Spectrometry Espectrometría Multivariate analysis Análisis multivariante Data analysis Análisis de datos Organic agriculture Agricultura orgánica Quinua |
id |
INIA_f73ac44a54bbc45677503f7758e3c311 |
---|---|
oai_identifier_str |
oai:null:20.500.12955/2583 |
network_acronym_str |
INIA |
network_name_str |
INIA-Institucional |
repository_id_str |
4830 |
dc.title.es_PE.fl_str_mv |
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry combined with chemometrics for protein profiling and classification of boiled and extruded quinoa from conventional and organic crops |
title |
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry combined with chemometrics for protein profiling and classification of boiled and extruded quinoa from conventional and organic crops |
spellingShingle |
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry combined with chemometrics for protein profiling and classification of boiled and extruded quinoa from conventional and organic crops Galindo Luján, Rocío Boiling Conventional Farming Extrusion Maldiquant MALDI-TOF-MS Multivariate Data Analysis Organic Farming Proteins Quinoa https://purl.org/pe-repo/ocde/ford#2.11.00 Boiling Ebullición Conventional farming Agricultura convencional Extrusion Spectrometry Espectrometría Multivariate analysis Análisis multivariante Data analysis Análisis de datos Organic agriculture Agricultura orgánica Quinoa Quinua |
title_short |
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry combined with chemometrics for protein profiling and classification of boiled and extruded quinoa from conventional and organic crops |
title_full |
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry combined with chemometrics for protein profiling and classification of boiled and extruded quinoa from conventional and organic crops |
title_fullStr |
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry combined with chemometrics for protein profiling and classification of boiled and extruded quinoa from conventional and organic crops |
title_full_unstemmed |
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry combined with chemometrics for protein profiling and classification of boiled and extruded quinoa from conventional and organic crops |
title_sort |
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry combined with chemometrics for protein profiling and classification of boiled and extruded quinoa from conventional and organic crops |
author |
Galindo Luján, Rocío |
author_facet |
Galindo Luján, Rocío Pont, Laura Quispe Jacobo, Fredy Enrique Sanz Nebot, Victoria Benavente, Fernando |
author_role |
author |
author2 |
Pont, Laura Quispe Jacobo, Fredy Enrique Sanz Nebot, Victoria Benavente, Fernando |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Galindo Luján, Rocío Pont, Laura Quispe Jacobo, Fredy Enrique Sanz Nebot, Victoria Benavente, Fernando |
dc.subject.es_PE.fl_str_mv |
Boiling Conventional Farming Extrusion Maldiquant MALDI-TOF-MS Multivariate Data Analysis Organic Farming Proteins Quinoa |
topic |
Boiling Conventional Farming Extrusion Maldiquant MALDI-TOF-MS Multivariate Data Analysis Organic Farming Proteins Quinoa https://purl.org/pe-repo/ocde/ford#2.11.00 Boiling Ebullición Conventional farming Agricultura convencional Extrusion Spectrometry Espectrometría Multivariate analysis Análisis multivariante Data analysis Análisis de datos Organic agriculture Agricultura orgánica Quinoa Quinua |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.11.00 |
dc.subject.agrovoc.es_PE.fl_str_mv |
Boiling Ebullición Conventional farming Agricultura convencional Extrusion Spectrometry Espectrometría Multivariate analysis Análisis multivariante Data analysis Análisis de datos Organic agriculture Agricultura orgánica Quinoa Quinua |
description |
Quinoa is an Andean crop that stands out as a high-quality protein-rich and gluten-free food. However, its increasing popularity exposes quinoa products to the potential risk of adulteration with cheaper cereals. Consequently, there is a need for novel methodologies to accurately characterize the composition of quinoa, which is influenced not only by the variety type but also by the farming and processing conditions. In this study, we present a rapid and straightforward method based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to generate global fingerprints of quinoa proteins from white quinoa varieties, which were cultivated under conventional and organic farming and processed through boiling and extrusion. The mass spectra of the different protein extracts were processed using the MALDIquant software (version 1.19.3), detecting 49 proteins (with 31 tentatively identified). Intensity values from these proteins were then considered protein fingerprints for multivariate data analysis. Our results revealed reliable partial least squares-discriminant analysis (PLS-DA) classification models for distinguishing between farming and processing conditions, and the detected proteins that were critical for differentiation. They confirm the effectiveness of tracing the agricultural origins and technological treatments of quinoa grains through protein fingerprinting by MALDI-TOF-MS and chemometrics. This untargeted approach offers promising applications in food control and the food-processing industry. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-09-30T18:41:18Z |
dc.date.available.none.fl_str_mv |
2024-09-30T18:41:18Z |
dc.date.issued.fl_str_mv |
2024-06-17 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.es_PE.fl_str_mv |
Galindo-Luján, R.; Pont, L.; Quispe-Jacobo, F.E.; Sanz-Nebot, V.; & Benavente, F. (2024). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry combined with chemometrics for protein profiling and classification of boiled and extruded quinoa from conventional and organic crops. Foods,13(12),1906. doi:10.3390/foods13121906 |
dc.identifier.issn.none.fl_str_mv |
2304-8158 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12955/2583 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/foods13121906 |
identifier_str_mv |
Galindo-Luján, R.; Pont, L.; Quispe-Jacobo, F.E.; Sanz-Nebot, V.; & Benavente, F. (2024). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry combined with chemometrics for protein profiling and classification of boiled and extruded quinoa from conventional and organic crops. Foods,13(12),1906. doi:10.3390/foods13121906 2304-8158 |
url |
https://hdl.handle.net/20.500.12955/2583 https://doi.org/10.3390/foods13121906 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.es_PE.fl_str_mv |
urn:issn:2304-8158 |
dc.relation.ispartofseries.es_PE.fl_str_mv |
Foods |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
MDPI |
dc.publisher.country.es_PE.fl_str_mv |
CH |
dc.source.es_PE.fl_str_mv |
Instituto Nacional de Innovación Agraria |
dc.source.none.fl_str_mv |
reponame:INIA-Institucional instname:Instituto Nacional de Innovación Agraria instacron:INIA |
instname_str |
Instituto Nacional de Innovación Agraria |
instacron_str |
INIA |
institution |
INIA |
reponame_str |
INIA-Institucional |
collection |
INIA-Institucional |
dc.source.uri.es_PE.fl_str_mv |
Repositorio Institucional - INIA |
bitstream.url.fl_str_mv |
https://repositorio.inia.gob.pe/bitstreams/29e36e26-b78f-4010-a80f-337d3436c8ec/download https://repositorio.inia.gob.pe/bitstreams/d89eb1fb-60e8-4889-81d7-ffb1f164b25b/download https://repositorio.inia.gob.pe/bitstreams/6e17152a-2189-4cce-a89b-a57f78b69a15/download https://repositorio.inia.gob.pe/bitstreams/0d17091b-e7e6-42fa-87d5-970637844083/download |
bitstream.checksum.fl_str_mv |
dbe3d6149a8ae649c7026effe64cb8d6 8a4605be74aa9ea9d79846c1fba20a33 e36f470221593f10a687ea68ac8affab e23d0343356659fa94ea0a4737a66abb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional INIA |
repository.mail.fl_str_mv |
repositorio@inia.gob.pe |
_version_ |
1833331734781886464 |
spelling |
Galindo Luján, RocíoPont, LauraQuispe Jacobo, Fredy EnriqueSanz Nebot, VictoriaBenavente, Fernando2024-09-30T18:41:18Z2024-09-30T18:41:18Z2024-06-17Galindo-Luján, R.; Pont, L.; Quispe-Jacobo, F.E.; Sanz-Nebot, V.; & Benavente, F. (2024). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry combined with chemometrics for protein profiling and classification of boiled and extruded quinoa from conventional and organic crops. Foods,13(12),1906. doi:10.3390/foods131219062304-8158https://hdl.handle.net/20.500.12955/2583https://doi.org/10.3390/foods13121906Quinoa is an Andean crop that stands out as a high-quality protein-rich and gluten-free food. However, its increasing popularity exposes quinoa products to the potential risk of adulteration with cheaper cereals. Consequently, there is a need for novel methodologies to accurately characterize the composition of quinoa, which is influenced not only by the variety type but also by the farming and processing conditions. In this study, we present a rapid and straightforward method based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to generate global fingerprints of quinoa proteins from white quinoa varieties, which were cultivated under conventional and organic farming and processed through boiling and extrusion. The mass spectra of the different protein extracts were processed using the MALDIquant software (version 1.19.3), detecting 49 proteins (with 31 tentatively identified). Intensity values from these proteins were then considered protein fingerprints for multivariate data analysis. Our results revealed reliable partial least squares-discriminant analysis (PLS-DA) classification models for distinguishing between farming and processing conditions, and the detected proteins that were critical for differentiation. They confirm the effectiveness of tracing the agricultural origins and technological treatments of quinoa grains through protein fingerprinting by MALDI-TOF-MS and chemometrics. This untargeted approach offers promising applications in food control and the food-processing industry.This study was supported by grant PID2021-127137OB-I00, unded byMCIN/AEI/10.13039/501100011033, and by “ERDF A way of making Europe”. The Bioanalysis group of the university of Barcelona is part of the INSA-UB Maria de Maeztu Unit of Excellence (Grant CEX2021-001234-M) funded by MCIN/AEI/FEDER, UE.application/pdfengMDPICHurn:issn:2304-8158Foodsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIABoilingConventional FarmingExtrusionMaldiquantMALDI-TOF-MSMultivariateData AnalysisOrganic FarmingProteinsQuinoahttps://purl.org/pe-repo/ocde/ford#2.11.00BoilingEbulliciónConventional farmingAgricultura convencionalExtrusionSpectrometryEspectrometríaMultivariate analysisAnálisis multivarianteData analysisAnálisis de datosOrganic agricultureAgricultura orgánicaQuinoaQuinuaMatrix-assisted laser desorption ionization time-of-flight mass spectrometry combined with chemometrics for protein profiling and classification of boiled and extruded quinoa from conventional and organic cropsinfo:eu-repo/semantics/articleORIGINALGalindo_et-al_2024_spectrometry_quinoa_crops.pdfGalindo_et-al_2024_spectrometry_quinoa_crops.pdfapplication/pdf3007991https://repositorio.inia.gob.pe/bitstreams/29e36e26-b78f-4010-a80f-337d3436c8ec/downloaddbe3d6149a8ae649c7026effe64cb8d6MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/d89eb1fb-60e8-4889-81d7-ffb1f164b25b/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTGalindo_et-al_2024_spectrometry_quinoa_crops.pdf.txtGalindo_et-al_2024_spectrometry_quinoa_crops.pdf.txtExtracted texttext/plain68482https://repositorio.inia.gob.pe/bitstreams/6e17152a-2189-4cce-a89b-a57f78b69a15/downloade36f470221593f10a687ea68ac8affabMD53THUMBNAILGalindo_et-al_2024_spectrometry_quinoa_crops.pdf.jpgGalindo_et-al_2024_spectrometry_quinoa_crops.pdf.jpgGenerated Thumbnailimage/jpeg1660https://repositorio.inia.gob.pe/bitstreams/0d17091b-e7e6-42fa-87d5-970637844083/downloade23d0343356659fa94ea0a4737a66abbMD5420.500.12955/2583oai:repositorio.inia.gob.pe:20.500.12955/25832024-09-30 13:41:19.52https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.754011 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).