Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.)
Descripción del Articulo
Rice (Oryza sativa L.) is a staple crop for sustaining global food security and is particularly important in tropical and subtropical regions. In this context, precision agriculture enables more efficient crop management to increase productivity and sustainability. This study proposes an integrated...
| Autores: | , , , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2025 |
| Institución: | Instituto Nacional de Innovación Agraria |
| Repositorio: | INIA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.inia.gob.pe:20.500.12955/2811 |
| Enlace del recurso: | http://hdl.handle.net/20.500.12955/2811 https://doi.org/10.1016/j.atech.2025.101203 |
| Nivel de acceso: | acceso abierto |
| Materia: | agronomic traits crop monitoring meteorological information remote sensing rice yield estimation características agronómicas monitoreo de cultivos información meteorológica teledetección estimación del rendimiento del arroz https://purl.org/pe-repo/ocde/ford#4.01.06 agronomic characters; Característica agronómica; meteorological data; datos meteorológicos; oryza sativa; arroz; precision agricultura; agricultura de precisión; vegetation index; índice de vegetación. |
| id |
INIA_d5ab93c3325822bee5d3a6cdad5cc2c1 |
|---|---|
| oai_identifier_str |
oai:repositorio.inia.gob.pe:20.500.12955/2811 |
| network_acronym_str |
INIA |
| network_name_str |
INIA-Institucional |
| repository_id_str |
4830 |
| dc.title.none.fl_str_mv |
Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.) |
| title |
Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.) |
| spellingShingle |
Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.) Fernandez Jibaja, Jorge Antonio agronomic traits crop monitoring meteorological information remote sensing rice yield estimation características agronómicas monitoreo de cultivos información meteorológica teledetección estimación del rendimiento del arroz https://purl.org/pe-repo/ocde/ford#4.01.06 agronomic characters; Característica agronómica; meteorological data; datos meteorológicos; oryza sativa; arroz; precision agricultura; agricultura de precisión; vegetation index; índice de vegetación. |
| title_short |
Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.) |
| title_full |
Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.) |
| title_fullStr |
Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.) |
| title_full_unstemmed |
Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.) |
| title_sort |
Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.) |
| author |
Fernandez Jibaja, Jorge Antonio |
| author_facet |
Fernandez Jibaja, Jorge Antonio Atalaya Marin, Nilton Álvarez Robledo, Yeltsin Abel Taboada Mitma, Víctor Hugo Cruz Luis, Juancarlos Alejandro Tineo Flores, Daniel Goñas Goñas, Malluri Gómez Fernández, Darwin |
| author_role |
author |
| author2 |
Atalaya Marin, Nilton Álvarez Robledo, Yeltsin Abel Taboada Mitma, Víctor Hugo Cruz Luis, Juancarlos Alejandro Tineo Flores, Daniel Goñas Goñas, Malluri Gómez Fernández, Darwin |
| author2_role |
author author author author author author author |
| dc.contributor.author.fl_str_mv |
Fernandez Jibaja, Jorge Antonio Atalaya Marin, Nilton Álvarez Robledo, Yeltsin Abel Taboada Mitma, Víctor Hugo Cruz Luis, Juancarlos Alejandro Tineo Flores, Daniel Goñas Goñas, Malluri Gómez Fernández, Darwin |
| dc.subject.none.fl_str_mv |
agronomic traits crop monitoring meteorological information remote sensing rice yield estimation características agronómicas monitoreo de cultivos información meteorológica teledetección estimación del rendimiento del arroz |
| topic |
agronomic traits crop monitoring meteorological information remote sensing rice yield estimation características agronómicas monitoreo de cultivos información meteorológica teledetección estimación del rendimiento del arroz https://purl.org/pe-repo/ocde/ford#4.01.06 agronomic characters; Característica agronómica; meteorological data; datos meteorológicos; oryza sativa; arroz; precision agricultura; agricultura de precisión; vegetation index; índice de vegetación. |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#4.01.06 |
| dc.subject.agrovoc.none.fl_str_mv |
agronomic characters; Característica agronómica; meteorological data; datos meteorológicos; oryza sativa; arroz; precision agricultura; agricultura de precisión; vegetation index; índice de vegetación. |
| description |
Rice (Oryza sativa L.) is a staple crop for sustaining global food security and is particularly important in tropical and subtropical regions. In this context, precision agriculture enables more efficient crop management to increase productivity and sustainability. This study proposes an integrated framework for monitoring the phenological development and estimating the yield of O. sativa by combining agronomic variables, vegetation indices (VIs), and meteorological data. Six rice varieties (Victoria, Esperanza, Bellavista, Puntilla, Capoteña, and Valor) were evaluated across six phenological stages using field data, 20 VIs and meteorological parameters. Field data revealed greater tillering of the Puntilla and Valor varieties (9–28 tillers), with Esperanza having the most stable chlorophyll values (21.5–38.7, σ = 10.46) during ripening. The temporal dynamics of the VIs consistently increased from the seedling to inflorescence emergence stage, followed by a decrease during flowering and ripening, which aligns with known physiological transitions in rice; however, significant differences in the NDVI index were detected during ripening (p > 0.05). For yield estimation, feature selection was performed using principal component analysis (PCA) and the least absolute shrinkage and selection operator (LASSO) to increase model efficiency and interpretability. Among the regression algorithms tested, support vector regression (SVR) demonstrated the highest predictive accuracy (R² = 0.81) for the Bellavista variety at the maximum tillering stage. Furthermore, the Valor variety presented the highest grain yield (13.70 t/ha). These results underscore the potential of integrating multisource data with machine learning techniques for high-resolution phenological monitoring and varietal performance assessment. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-07-30T06:39:29Z |
| dc.date.available.none.fl_str_mv |
2025-07-30T06:39:29Z |
| dc.date.issued.fl_str_mv |
2025-07-15 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.none.fl_str_mv |
Fernandez-Jibaja, J. A., Atalaya-Marin, N., Álvarez-Robledo, Y. A., Taboada-Mitma, V. H., Cruz-Luis, J., Tineo, D., Goñas, M., & Gómez-Fernández, D. (2025). Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.). Smart Agricultural Technology , 101203. https://doi.org/10.1016/j.atech.2025.101203 |
| dc.identifier.issn.none.fl_str_mv |
2772-3755 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12955/2811 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.atech.2025.101203 |
| identifier_str_mv |
Fernandez-Jibaja, J. A., Atalaya-Marin, N., Álvarez-Robledo, Y. A., Taboada-Mitma, V. H., Cruz-Luis, J., Tineo, D., Goñas, M., & Gómez-Fernández, D. (2025). Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.). Smart Agricultural Technology , 101203. https://doi.org/10.1016/j.atech.2025.101203 2772-3755 |
| url |
http://hdl.handle.net/20.500.12955/2811 https://doi.org/10.1016/j.atech.2025.101203 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
urn:issn:2772-3755 |
| dc.relation.ispartofseries.none.fl_str_mv |
Smart Agricultural Technology |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| dc.publisher.country.none.fl_str_mv |
NL |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
Instituto Nacional de Innovación Agraria reponame:INIA-Institucional instname:Instituto Nacional de Innovación Agraria instacron:INIA |
| instname_str |
Instituto Nacional de Innovación Agraria |
| instacron_str |
INIA |
| institution |
INIA |
| reponame_str |
INIA-Institucional |
| collection |
INIA-Institucional |
| dc.source.uri.none.fl_str_mv |
Repositorio Institucional - INIA |
| bitstream.url.fl_str_mv |
https://repositorio.inia.gob.pe/bitstreams/26f6b198-1f40-4a65-90a9-83fe744ecc8a/download https://repositorio.inia.gob.pe/bitstreams/c8ee2961-5eaa-47c9-8260-22f896c83b51/download |
| bitstream.checksum.fl_str_mv |
a1dff3722e05e29dac20fa1a97a12ccf 80bbe5997371401049d6486864e1a3a2 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional INIA |
| repository.mail.fl_str_mv |
repositorio@inia.gob.pe |
| _version_ |
1840307528498413568 |
| spelling |
Fernandez Jibaja, Jorge AntonioAtalaya Marin, NiltonÁlvarez Robledo, Yeltsin AbelTaboada Mitma, Víctor HugoCruz Luis, Juancarlos AlejandroTineo Flores, DanielGoñas Goñas, MalluriGómez Fernández, Darwin2025-07-30T06:39:29Z2025-07-30T06:39:29Z2025-07-15Fernandez-Jibaja, J. A., Atalaya-Marin, N., Álvarez-Robledo, Y. A., Taboada-Mitma, V. H., Cruz-Luis, J., Tineo, D., Goñas, M., & Gómez-Fernández, D. (2025). Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.). Smart Agricultural Technology , 101203. https://doi.org/10.1016/j.atech.2025.1012032772-3755http://hdl.handle.net/20.500.12955/2811https://doi.org/10.1016/j.atech.2025.101203Rice (Oryza sativa L.) is a staple crop for sustaining global food security and is particularly important in tropical and subtropical regions. In this context, precision agriculture enables more efficient crop management to increase productivity and sustainability. This study proposes an integrated framework for monitoring the phenological development and estimating the yield of O. sativa by combining agronomic variables, vegetation indices (VIs), and meteorological data. Six rice varieties (Victoria, Esperanza, Bellavista, Puntilla, Capoteña, and Valor) were evaluated across six phenological stages using field data, 20 VIs and meteorological parameters. Field data revealed greater tillering of the Puntilla and Valor varieties (9–28 tillers), with Esperanza having the most stable chlorophyll values (21.5–38.7, σ = 10.46) during ripening. The temporal dynamics of the VIs consistently increased from the seedling to inflorescence emergence stage, followed by a decrease during flowering and ripening, which aligns with known physiological transitions in rice; however, significant differences in the NDVI index were detected during ripening (p > 0.05). For yield estimation, feature selection was performed using principal component analysis (PCA) and the least absolute shrinkage and selection operator (LASSO) to increase model efficiency and interpretability. Among the regression algorithms tested, support vector regression (SVR) demonstrated the highest predictive accuracy (R² = 0.81) for the Bellavista variety at the maximum tillering stage. Furthermore, the Valor variety presented the highest grain yield (13.70 t/ha). These results underscore the potential of integrating multisource data with machine learning techniques for high-resolution phenological monitoring and varietal performance assessment.This study was funded by Investment Project with CUI No. 2472675: “Mejoramiento de los servicios de investigación y transferencia de tecnología agraria en la estación agraria experimental Baños del Inca en la localidad de Baños del Inca del distrito de Baños del Inca - provincia de Cajamarca - departamento de Cajamarca”, Dirección de Servicios Estratégicos Agrarios (DSEA), Instituto Nacional de Innovación Agraria (INIA). The authors thank Teiser Sanchez, Pedro Torres, Larry García and Javier Yovera for their help in data collectionapplication/pdfengElsevierNLurn:issn:2772-3755Smart Agricultural Technologyinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación Agrariareponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIARepositorio Institucional - INIAagronomic traitscrop monitoringmeteorological informationremote sensingrice yield estimationcaracterísticas agronómicasmonitoreo de cultivosinformación meteorológicateledetecciónestimación del rendimiento del arrozhttps://purl.org/pe-repo/ocde/ford#4.01.06agronomic characters; Característica agronómica; meteorological data; datos meteorológicos; oryza sativa; arroz; precision agricultura; agricultura de precisión; vegetation index; índice de vegetación.Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.)info:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81792https://repositorio.inia.gob.pe/bitstreams/26f6b198-1f40-4a65-90a9-83fe744ecc8a/downloada1dff3722e05e29dac20fa1a97a12ccfMD52ORIGINALFernandez_et-al_2025_integration_phenological.pdfFernandez_et-al_2025_integration_phenological.pdfapplication/pdf11396859https://repositorio.inia.gob.pe/bitstreams/c8ee2961-5eaa-47c9-8260-22f896c83b51/download80bbe5997371401049d6486864e1a3a2MD5320.500.12955/2811oai:repositorio.inia.gob.pe:20.500.12955/28112025-07-30 01:39:29.242http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9UQTogQ09MT1FVRSBTVSBQUk9QSUEgTElDRU5DSUEgQVFVw40KRXN0YSBsaWNlbmNpYSBkZSBtdWVzdHJhIHNlIHByb3BvcmNpb25hIMO6bmljYW1lbnRlIGNvbiBmaW5lcyBpbmZvcm1hdGl2b3MuCgpMSUNFTkNJQSBERSBESVNUUklCVUNJw5NOIE5PIEVYQ0xVU0lWQQpBbCBmaXJtYXIgeSBlbnZpYXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yIG8gcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBvdG9yZ2EgYSBEU3BhY2UgVW5pdmVyc2l0eSAoRFNVKSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSByZXByb2R1Y2lyLCB0cmFkdWNpciAoY29tbyBzZSBkZWZpbmUgYSBjb250aW51YWNpw7NuKSB5L28gZGlzdHJpYnVpciBzdSBlbnbDrW8gKGluY2x1aWRvIGVsIHJlc3VtZW4pLiApIGVuIHRvZG8gZWwgbXVuZG8gZW4gZm9ybWF0byBpbXByZXNvIHkgZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG1lZGlvLCBpbmNsdWlkb3MsIGVudHJlIG90cm9zLCBhdWRpbyBvIHbDrWRlby4KClVzdGVkIGFjZXB0YSBxdWUgRFNVIHB1ZWRlLCBzaW4gY2FtYmlhciBlbCBjb250ZW5pZG8sIHRyYWR1Y2lyIGVsIGVudsOtbyBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gY29uIGVsIGZpbiBkZSBwcmVzZXJ2YXJsby4KClRhbWJpw6luIGFjZXB0YSBxdWUgRFNVIHB1ZWRlIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGVudsOtbyBwb3IgbW90aXZvcyBkZSBzZWd1cmlkYWQsIHJlc3BhbGRvIHkgcHJlc2VydmFjacOzbi4KClVzdGVkIGRlY2xhcmEgcXVlIGVsIGVudsOtbyBlcyBzdSB0cmFiYWpvIG9yaWdpbmFsIHkgcXVlIHRpZW5lIGRlcmVjaG8gYSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuIFRhbWJpw6luIGRlY2xhcmEgcXVlIHN1IGVudsOtbywgYSBzdSBsZWFsIHNhYmVyIHkgZW50ZW5kZXIsIG5vIGluZnJpbmdlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBuYWRpZS4KClNpIGVsIGVudsOtbyBjb250aWVuZSBtYXRlcmlhbCBzb2JyZSBlbCBjdWFsIHVzdGVkIG5vIHBvc2VlIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIGlsaW1pdGFkbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgb3RvcmdhciBhIERTVSBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgeSBxdWUgZGljaG8gbWF0ZXJpYWwgcHJvcGllZGFkIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBkZW50cm8gZGUgZWwgdGV4dG8gbyBjb250ZW5pZG8gZGUgbGEgcHJlc2VudGFjacOzbi4KClNJIEVMIEVOVsONTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBVIE9SR0FOSVpBQ0nDk04gRElTVElOVEEgREUgRFNVLCBVU1RFRCBERUNMQVJBIFFVRSBIQSBDVU1QTElETyBDVUFMUVVJRVIgREVSRUNITyBERSBSRVZJU0nDk04gVSBPVFJBUyBPQkxJR0FDSU9ORVMgUkVRVUVSSURBUyBQT1IgRElDSE8gQ09OVFJBVE8gTyBBQ1VFUkRPLgoKRFNVIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdShzKSBub21icmUocykgY29tbyBhdXRvcihlcykgbyBwcm9waWV0YXJpbyhzKSBkZWwgZW52w61vIHkgbm8gcmVhbGl6YXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGVuIHN1IGVudsOtbywgc2Fsdm8gbGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW5jaWEuCg== |
| score |
13.924177 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).