Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.)

Descripción del Articulo

Rice (Oryza sativa L.) is a staple crop for sustaining global food security and is particularly important in tropical and subtropical regions. In this context, precision agriculture enables more efficient crop management to increase productivity and sustainability. This study proposes an integrated...

Descripción completa

Detalles Bibliográficos
Autores: Fernandez Jibaja, Jorge Antonio, Atalaya Marin, Nilton, Álvarez Robledo, Yeltsin Abel, Taboada Mitma, Víctor Hugo, Cruz Luis, Juancarlos Alejandro, Tineo Flores, Daniel, Goñas Goñas, Malluri, Gómez Fernández, Darwin
Formato: artículo
Fecha de Publicación:2025
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.inia.gob.pe:20.500.12955/2811
Enlace del recurso:http://hdl.handle.net/20.500.12955/2811
https://doi.org/10.1016/j.atech.2025.101203
Nivel de acceso:acceso abierto
Materia:agronomic traits
crop monitoring
meteorological information
remote sensing
rice yield estimation
características agronómicas
monitoreo de cultivos
información meteorológica
teledetección
estimación del rendimiento del arroz
https://purl.org/pe-repo/ocde/ford#4.01.06
agronomic characters; Característica agronómica; meteorological data; datos meteorológicos; oryza sativa; arroz; precision agricultura; agricultura de precisión; vegetation index; índice de vegetación.
id INIA_d5ab93c3325822bee5d3a6cdad5cc2c1
oai_identifier_str oai:repositorio.inia.gob.pe:20.500.12955/2811
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.none.fl_str_mv Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.)
title Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.)
spellingShingle Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.)
Fernandez Jibaja, Jorge Antonio
agronomic traits
crop monitoring
meteorological information
remote sensing
rice yield estimation
características agronómicas
monitoreo de cultivos
información meteorológica
teledetección
estimación del rendimiento del arroz
https://purl.org/pe-repo/ocde/ford#4.01.06
agronomic characters; Característica agronómica; meteorological data; datos meteorológicos; oryza sativa; arroz; precision agricultura; agricultura de precisión; vegetation index; índice de vegetación.
title_short Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.)
title_full Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.)
title_fullStr Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.)
title_full_unstemmed Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.)
title_sort Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.)
author Fernandez Jibaja, Jorge Antonio
author_facet Fernandez Jibaja, Jorge Antonio
Atalaya Marin, Nilton
Álvarez Robledo, Yeltsin Abel
Taboada Mitma, Víctor Hugo
Cruz Luis, Juancarlos Alejandro
Tineo Flores, Daniel
Goñas Goñas, Malluri
Gómez Fernández, Darwin
author_role author
author2 Atalaya Marin, Nilton
Álvarez Robledo, Yeltsin Abel
Taboada Mitma, Víctor Hugo
Cruz Luis, Juancarlos Alejandro
Tineo Flores, Daniel
Goñas Goñas, Malluri
Gómez Fernández, Darwin
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Fernandez Jibaja, Jorge Antonio
Atalaya Marin, Nilton
Álvarez Robledo, Yeltsin Abel
Taboada Mitma, Víctor Hugo
Cruz Luis, Juancarlos Alejandro
Tineo Flores, Daniel
Goñas Goñas, Malluri
Gómez Fernández, Darwin
dc.subject.none.fl_str_mv agronomic traits
crop monitoring
meteorological information
remote sensing
rice yield estimation
características agronómicas
monitoreo de cultivos
información meteorológica
teledetección
estimación del rendimiento del arroz
topic agronomic traits
crop monitoring
meteorological information
remote sensing
rice yield estimation
características agronómicas
monitoreo de cultivos
información meteorológica
teledetección
estimación del rendimiento del arroz
https://purl.org/pe-repo/ocde/ford#4.01.06
agronomic characters; Característica agronómica; meteorological data; datos meteorológicos; oryza sativa; arroz; precision agricultura; agricultura de precisión; vegetation index; índice de vegetación.
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.01.06
dc.subject.agrovoc.none.fl_str_mv agronomic characters; Característica agronómica; meteorological data; datos meteorológicos; oryza sativa; arroz; precision agricultura; agricultura de precisión; vegetation index; índice de vegetación.
description Rice (Oryza sativa L.) is a staple crop for sustaining global food security and is particularly important in tropical and subtropical regions. In this context, precision agriculture enables more efficient crop management to increase productivity and sustainability. This study proposes an integrated framework for monitoring the phenological development and estimating the yield of O. sativa by combining agronomic variables, vegetation indices (VIs), and meteorological data. Six rice varieties (Victoria, Esperanza, Bellavista, Puntilla, Capoteña, and Valor) were evaluated across six phenological stages using field data, 20 VIs and meteorological parameters. Field data revealed greater tillering of the Puntilla and Valor varieties (9–28 tillers), with Esperanza having the most stable chlorophyll values (21.5–38.7, σ = 10.46) during ripening. The temporal dynamics of the VIs consistently increased from the seedling to inflorescence emergence stage, followed by a decrease during flowering and ripening, which aligns with known physiological transitions in rice; however, significant differences in the NDVI index were detected during ripening (p > 0.05). For yield estimation, feature selection was performed using principal component analysis (PCA) and the least absolute shrinkage and selection operator (LASSO) to increase model efficiency and interpretability. Among the regression algorithms tested, support vector regression (SVR) demonstrated the highest predictive accuracy (R² = 0.81) for the Bellavista variety at the maximum tillering stage. Furthermore, the Valor variety presented the highest grain yield (13.70 t/ha). These results underscore the potential of integrating multisource data with machine learning techniques for high-resolution phenological monitoring and varietal performance assessment.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-07-30T06:39:29Z
dc.date.available.none.fl_str_mv 2025-07-30T06:39:29Z
dc.date.issued.fl_str_mv 2025-07-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv Fernandez-Jibaja, J. A., Atalaya-Marin, N., Álvarez-Robledo, Y. A., Taboada-Mitma, V. H., Cruz-Luis, J., Tineo, D., Goñas, M., & Gómez-Fernández, D. (2025). Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.). Smart Agricultural Technology , 101203. https://doi.org/10.1016/j.atech.2025.101203
dc.identifier.issn.none.fl_str_mv 2772-3755
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12955/2811
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.atech.2025.101203
identifier_str_mv Fernandez-Jibaja, J. A., Atalaya-Marin, N., Álvarez-Robledo, Y. A., Taboada-Mitma, V. H., Cruz-Luis, J., Tineo, D., Goñas, M., & Gómez-Fernández, D. (2025). Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.). Smart Agricultural Technology , 101203. https://doi.org/10.1016/j.atech.2025.101203
2772-3755
url http://hdl.handle.net/20.500.12955/2811
https://doi.org/10.1016/j.atech.2025.101203
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2772-3755
dc.relation.ispartofseries.none.fl_str_mv Smart Agricultural Technology
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
dc.publisher.country.none.fl_str_mv NL
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv Instituto Nacional de Innovación Agraria
reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.none.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/26f6b198-1f40-4a65-90a9-83fe744ecc8a/download
https://repositorio.inia.gob.pe/bitstreams/c8ee2961-5eaa-47c9-8260-22f896c83b51/download
bitstream.checksum.fl_str_mv a1dff3722e05e29dac20fa1a97a12ccf
80bbe5997371401049d6486864e1a3a2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1840307528498413568
spelling Fernandez Jibaja, Jorge AntonioAtalaya Marin, NiltonÁlvarez Robledo, Yeltsin AbelTaboada Mitma, Víctor HugoCruz Luis, Juancarlos AlejandroTineo Flores, DanielGoñas Goñas, MalluriGómez Fernández, Darwin2025-07-30T06:39:29Z2025-07-30T06:39:29Z2025-07-15Fernandez-Jibaja, J. A., Atalaya-Marin, N., Álvarez-Robledo, Y. A., Taboada-Mitma, V. H., Cruz-Luis, J., Tineo, D., Goñas, M., & Gómez-Fernández, D. (2025). Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.). Smart Agricultural Technology , 101203. https://doi.org/10.1016/j.atech.2025.1012032772-3755http://hdl.handle.net/20.500.12955/2811https://doi.org/10.1016/j.atech.2025.101203Rice (Oryza sativa L.) is a staple crop for sustaining global food security and is particularly important in tropical and subtropical regions. In this context, precision agriculture enables more efficient crop management to increase productivity and sustainability. This study proposes an integrated framework for monitoring the phenological development and estimating the yield of O. sativa by combining agronomic variables, vegetation indices (VIs), and meteorological data. Six rice varieties (Victoria, Esperanza, Bellavista, Puntilla, Capoteña, and Valor) were evaluated across six phenological stages using field data, 20 VIs and meteorological parameters. Field data revealed greater tillering of the Puntilla and Valor varieties (9–28 tillers), with Esperanza having the most stable chlorophyll values (21.5–38.7, σ = 10.46) during ripening. The temporal dynamics of the VIs consistently increased from the seedling to inflorescence emergence stage, followed by a decrease during flowering and ripening, which aligns with known physiological transitions in rice; however, significant differences in the NDVI index were detected during ripening (p > 0.05). For yield estimation, feature selection was performed using principal component analysis (PCA) and the least absolute shrinkage and selection operator (LASSO) to increase model efficiency and interpretability. Among the regression algorithms tested, support vector regression (SVR) demonstrated the highest predictive accuracy (R² = 0.81) for the Bellavista variety at the maximum tillering stage. Furthermore, the Valor variety presented the highest grain yield (13.70 t/ha). These results underscore the potential of integrating multisource data with machine learning techniques for high-resolution phenological monitoring and varietal performance assessment.This study was funded by Investment Project with CUI No. 2472675: “Mejoramiento de los servicios de investigación y transferencia de tecnología agraria en la estación agraria experimental Baños del Inca en la localidad de Baños del Inca del distrito de Baños del Inca - provincia de Cajamarca - departamento de Cajamarca”, Dirección de Servicios Estratégicos Agrarios (DSEA), Instituto Nacional de Innovación Agraria (INIA). The authors thank Teiser Sanchez, Pedro Torres, Larry García and Javier Yovera for their help in data collectionapplication/pdfengElsevierNLurn:issn:2772-3755Smart Agricultural Technologyinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación Agrariareponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIARepositorio Institucional - INIAagronomic traitscrop monitoringmeteorological informationremote sensingrice yield estimationcaracterísticas agronómicasmonitoreo de cultivosinformación meteorológicateledetecciónestimación del rendimiento del arrozhttps://purl.org/pe-repo/ocde/ford#4.01.06agronomic characters; Característica agronómica; meteorological data; datos meteorológicos; oryza sativa; arroz; precision agricultura; agricultura de precisión; vegetation index; índice de vegetación.Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.)info:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81792https://repositorio.inia.gob.pe/bitstreams/26f6b198-1f40-4a65-90a9-83fe744ecc8a/downloada1dff3722e05e29dac20fa1a97a12ccfMD52ORIGINALFernandez_et-al_2025_integration_phenological.pdfFernandez_et-al_2025_integration_phenological.pdfapplication/pdf11396859https://repositorio.inia.gob.pe/bitstreams/c8ee2961-5eaa-47c9-8260-22f896c83b51/download80bbe5997371401049d6486864e1a3a2MD5320.500.12955/2811oai:repositorio.inia.gob.pe:20.500.12955/28112025-07-30 01:39:29.242http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9UQTogQ09MT1FVRSBTVSBQUk9QSUEgTElDRU5DSUEgQVFVw40KRXN0YSBsaWNlbmNpYSBkZSBtdWVzdHJhIHNlIHByb3BvcmNpb25hIMO6bmljYW1lbnRlIGNvbiBmaW5lcyBpbmZvcm1hdGl2b3MuCgpMSUNFTkNJQSBERSBESVNUUklCVUNJw5NOIE5PIEVYQ0xVU0lWQQpBbCBmaXJtYXIgeSBlbnZpYXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yIG8gcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBvdG9yZ2EgYSBEU3BhY2UgVW5pdmVyc2l0eSAoRFNVKSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSByZXByb2R1Y2lyLCB0cmFkdWNpciAoY29tbyBzZSBkZWZpbmUgYSBjb250aW51YWNpw7NuKSB5L28gZGlzdHJpYnVpciBzdSBlbnbDrW8gKGluY2x1aWRvIGVsIHJlc3VtZW4pLiApIGVuIHRvZG8gZWwgbXVuZG8gZW4gZm9ybWF0byBpbXByZXNvIHkgZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG1lZGlvLCBpbmNsdWlkb3MsIGVudHJlIG90cm9zLCBhdWRpbyBvIHbDrWRlby4KClVzdGVkIGFjZXB0YSBxdWUgRFNVIHB1ZWRlLCBzaW4gY2FtYmlhciBlbCBjb250ZW5pZG8sIHRyYWR1Y2lyIGVsIGVudsOtbyBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gY29uIGVsIGZpbiBkZSBwcmVzZXJ2YXJsby4KClRhbWJpw6luIGFjZXB0YSBxdWUgRFNVIHB1ZWRlIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGVudsOtbyBwb3IgbW90aXZvcyBkZSBzZWd1cmlkYWQsIHJlc3BhbGRvIHkgcHJlc2VydmFjacOzbi4KClVzdGVkIGRlY2xhcmEgcXVlIGVsIGVudsOtbyBlcyBzdSB0cmFiYWpvIG9yaWdpbmFsIHkgcXVlIHRpZW5lIGRlcmVjaG8gYSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuIFRhbWJpw6luIGRlY2xhcmEgcXVlIHN1IGVudsOtbywgYSBzdSBsZWFsIHNhYmVyIHkgZW50ZW5kZXIsIG5vIGluZnJpbmdlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBuYWRpZS4KClNpIGVsIGVudsOtbyBjb250aWVuZSBtYXRlcmlhbCBzb2JyZSBlbCBjdWFsIHVzdGVkIG5vIHBvc2VlIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIGlsaW1pdGFkbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgb3RvcmdhciBhIERTVSBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgeSBxdWUgZGljaG8gbWF0ZXJpYWwgcHJvcGllZGFkIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBkZW50cm8gZGUgZWwgdGV4dG8gbyBjb250ZW5pZG8gZGUgbGEgcHJlc2VudGFjacOzbi4KClNJIEVMIEVOVsONTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBVIE9SR0FOSVpBQ0nDk04gRElTVElOVEEgREUgRFNVLCBVU1RFRCBERUNMQVJBIFFVRSBIQSBDVU1QTElETyBDVUFMUVVJRVIgREVSRUNITyBERSBSRVZJU0nDk04gVSBPVFJBUyBPQkxJR0FDSU9ORVMgUkVRVUVSSURBUyBQT1IgRElDSE8gQ09OVFJBVE8gTyBBQ1VFUkRPLgoKRFNVIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdShzKSBub21icmUocykgY29tbyBhdXRvcihlcykgbyBwcm9waWV0YXJpbyhzKSBkZWwgZW52w61vIHkgbm8gcmVhbGl6YXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGVuIHN1IGVudsOtbywgc2Fsdm8gbGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW5jaWEuCg==
score 13.924177
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).