Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley
Descripción del Articulo
Quality and safety of the soil are essential to ensure social and economic development and provides the supply of contaminant free food. With agriculture intensification, expansion of urban zones, construction of roads, and mining, some agricultural soils sites become polluted increasing environment...
Autores: | , , , , , , |
---|---|
Formato: | documento de trabajo |
Fecha de Publicación: | 2024 |
Institución: | Instituto Nacional de Innovación Agraria |
Repositorio: | INIA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.inia.gob.pe:20.500.12955/2537 |
Enlace del recurso: | https://hdl.handle.net/20.500.12955/2537 http://dx.doi.org/10.2139/ssrn.4777607 |
Nivel de acceso: | acceso abierto |
Materia: | Random Forest Soil mapping Google Earth Engine Machine learning Cloud computing https://purl.org/pe-repo/ocde/ford#4.01.04 Algorithms Algoritmo Soil surveys Reconocimiento de suelos Spatial data Datos espaciales Aprendizaje automático |
id |
INIA_a6574dadf794f01ed75dfa3856cf36d5 |
---|---|
oai_identifier_str |
oai:repositorio.inia.gob.pe:20.500.12955/2537 |
network_acronym_str |
INIA |
network_name_str |
INIA-Institucional |
repository_id_str |
4830 |
dc.title.es_PE.fl_str_mv |
Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley |
title |
Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley |
spellingShingle |
Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley Pizarro Carcausto, Samuel Random Forest Soil mapping Google Earth Engine Machine learning Cloud computing https://purl.org/pe-repo/ocde/ford#4.01.04 Algorithms Algoritmo Soil surveys Reconocimiento de suelos Spatial data Datos espaciales Machine learning Aprendizaje automático |
title_short |
Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley |
title_full |
Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley |
title_fullStr |
Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley |
title_full_unstemmed |
Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley |
title_sort |
Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley |
author |
Pizarro Carcausto, Samuel |
author_facet |
Pizarro Carcausto, Samuel Vera Vilchez, Jesús Emilio Huamani, Joseph Cruz, Juancarlos Lastra, Sphyros Solórzano Acosta, Richard Verástegui Martínez, Patricia |
author_role |
author |
author2 |
Vera Vilchez, Jesús Emilio Huamani, Joseph Cruz, Juancarlos Lastra, Sphyros Solórzano Acosta, Richard Verástegui Martínez, Patricia |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Pizarro Carcausto, Samuel Vera Vilchez, Jesús Emilio Huamani, Joseph Cruz, Juancarlos Lastra, Sphyros Solórzano Acosta, Richard Verástegui Martínez, Patricia |
dc.subject.es_PE.fl_str_mv |
Random Forest Soil mapping Google Earth Engine Machine learning Cloud computing |
topic |
Random Forest Soil mapping Google Earth Engine Machine learning Cloud computing https://purl.org/pe-repo/ocde/ford#4.01.04 Algorithms Algoritmo Soil surveys Reconocimiento de suelos Spatial data Datos espaciales Machine learning Aprendizaje automático |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#4.01.04 |
dc.subject.agrovoc.es_PE.fl_str_mv |
Algorithms Algoritmo Soil surveys Reconocimiento de suelos Spatial data Datos espaciales Machine learning Aprendizaje automático |
description |
Quality and safety of the soil are essential to ensure social and economic development and provides the supply of contaminant free food. With agriculture intensification, expansion of urban zones, construction of roads, and mining, some agricultural soils sites become polluted increasing environmental risks to ecosystems functions and human health. Hence the need know the spatial distribution of elements in soils, we mapped 25 elements, namely Ca, Mg, Sr, Ba, Be, K, Na, As, Sb, Se, Tl, Cd, Zn, Al, Pb, Hg, Cr, Ni, Cu, Mo, Ag, Fe, Co, Mn and V, using various geospatial datasets, such as remote sensing, climate, topography, soil data, and distance, to establish the spatial estimation models of spatial distribution trained trough machine learning model with a supervised dataset of 109 topsoil samples, into Google earth engine platform. Using R2, RMSE and MAE to assess the prediction accuracy. First Random Forest gave satisfactory results in predicting the distribution of analyzed elements in soil, being improved for some elements when adds more trees. Additionally, each element analyzed has a different combination of environmental covariates as predictor, mainly soil, climate, topographic and distance variables especially croplands close to rivers, with less importance for spectral variables. Our results suggest that is possible to identify polluted soils and improved regulations to minimize harm to environmental health and human health, for short-to-medium-term environmental risk control. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-12T04:47:13Z |
dc.date.available.none.fl_str_mv |
2024-07-12T04:47:13Z |
dc.date.issued.fl_str_mv |
2024-03-29 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/workingPaper |
format |
workingPaper |
dc.identifier.citation.es_PE.fl_str_mv |
Pizarro-Carcausto, S.; Vera-Vilchez, J.; Huamani, J.; Cruz, J.; Lastra, S.; Solórzano-Acosta, R.; Verástegui-Martínez, P. (2024). Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley. SSRN. doi: 10.2139/ssrn.4777607 |
dc.identifier.issn.none.fl_str_mv |
1556-5068 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12955/2537 |
dc.identifier.doi.none.fl_str_mv |
http://dx.doi.org/10.2139/ssrn.4777607 |
identifier_str_mv |
Pizarro-Carcausto, S.; Vera-Vilchez, J.; Huamani, J.; Cruz, J.; Lastra, S.; Solórzano-Acosta, R.; Verástegui-Martínez, P. (2024). Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley. SSRN. doi: 10.2139/ssrn.4777607 1556-5068 |
url |
https://hdl.handle.net/20.500.12955/2537 http://dx.doi.org/10.2139/ssrn.4777607 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.es_PE.fl_str_mv |
urn:issn: 1556-5068 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Elsevier |
dc.publisher.country.es_PE.fl_str_mv |
US |
dc.source.es_PE.fl_str_mv |
Instituto Nacional de Innovación Agraria |
dc.source.none.fl_str_mv |
reponame:INIA-Institucional instname:Instituto Nacional de Innovación Agraria instacron:INIA |
instname_str |
Instituto Nacional de Innovación Agraria |
instacron_str |
INIA |
institution |
INIA |
reponame_str |
INIA-Institucional |
collection |
INIA-Institucional |
dc.source.uri.es_PE.fl_str_mv |
Repositorio Institucional - INIA |
bitstream.url.fl_str_mv |
https://repositorio.inia.gob.pe/bitstreams/a5debc19-d15f-4243-91dc-877f61842220/download https://repositorio.inia.gob.pe/bitstreams/41ac97d0-ac38-4fe4-bc21-2d78d7a2f880/download https://repositorio.inia.gob.pe/bitstreams/5725dbc4-5680-4a97-ba3c-95326f514e3f/download https://repositorio.inia.gob.pe/bitstreams/b3b7dd83-62bc-40fb-ac99-7830762312f8/download |
bitstream.checksum.fl_str_mv |
4b98b6a5e93f599f97f08e1f5c8c3a9e 8a4605be74aa9ea9d79846c1fba20a33 c8a547f3047c3667c932bae13e38b0bd c56c52c1e6f5862a32614bb91f8f3016 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional INIA |
repository.mail.fl_str_mv |
repositorio@inia.gob.pe |
_version_ |
1834599923024134144 |
spelling |
Pizarro Carcausto, SamuelVera Vilchez, Jesús EmilioHuamani, JosephCruz, JuancarlosLastra, SphyrosSolórzano Acosta, RichardVerástegui Martínez, Patricia2024-07-12T04:47:13Z2024-07-12T04:47:13Z2024-03-29Pizarro-Carcausto, S.; Vera-Vilchez, J.; Huamani, J.; Cruz, J.; Lastra, S.; Solórzano-Acosta, R.; Verástegui-Martínez, P. (2024). Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley. SSRN. doi: 10.2139/ssrn.47776071556-5068https://hdl.handle.net/20.500.12955/2537http://dx.doi.org/10.2139/ssrn.4777607Quality and safety of the soil are essential to ensure social and economic development and provides the supply of contaminant free food. With agriculture intensification, expansion of urban zones, construction of roads, and mining, some agricultural soils sites become polluted increasing environmental risks to ecosystems functions and human health. Hence the need know the spatial distribution of elements in soils, we mapped 25 elements, namely Ca, Mg, Sr, Ba, Be, K, Na, As, Sb, Se, Tl, Cd, Zn, Al, Pb, Hg, Cr, Ni, Cu, Mo, Ag, Fe, Co, Mn and V, using various geospatial datasets, such as remote sensing, climate, topography, soil data, and distance, to establish the spatial estimation models of spatial distribution trained trough machine learning model with a supervised dataset of 109 topsoil samples, into Google earth engine platform. Using R2, RMSE and MAE to assess the prediction accuracy. First Random Forest gave satisfactory results in predicting the distribution of analyzed elements in soil, being improved for some elements when adds more trees. Additionally, each element analyzed has a different combination of environmental covariates as predictor, mainly soil, climate, topographic and distance variables especially croplands close to rivers, with less importance for spectral variables. Our results suggest that is possible to identify polluted soils and improved regulations to minimize harm to environmental health and human health, for short-to-medium-term environmental risk control.application/pdfengElsevierUSurn:issn: 1556-5068info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIARandom ForestSoil mappingGoogle Earth EngineMachine learningCloud computinghttps://purl.org/pe-repo/ocde/ford#4.01.04AlgorithmsAlgoritmoSoil surveysReconocimiento de suelosSpatial dataDatos espacialesMachine learningAprendizaje automáticoDigital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valleyinfo:eu-repo/semantics/workingPaperORIGINALPizarro_et-al_2024_metals_mapping.pdfPizarro_et-al_2024_metals_mapping.pdfapplication/pdf5905228https://repositorio.inia.gob.pe/bitstreams/a5debc19-d15f-4243-91dc-877f61842220/download4b98b6a5e93f599f97f08e1f5c8c3a9eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/41ac97d0-ac38-4fe4-bc21-2d78d7a2f880/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTPizarro_et-al_2024_metals_mapping.pdf.txtPizarro_et-al_2024_metals_mapping.pdf.txtExtracted texttext/plain55712https://repositorio.inia.gob.pe/bitstreams/5725dbc4-5680-4a97-ba3c-95326f514e3f/downloadc8a547f3047c3667c932bae13e38b0bdMD53THUMBNAILPizarro_et-al_2024_metals_mapping.pdf.jpgPizarro_et-al_2024_metals_mapping.pdf.jpgGenerated Thumbnailimage/jpeg1503https://repositorio.inia.gob.pe/bitstreams/b3b7dd83-62bc-40fb-ac99-7830762312f8/downloadc56c52c1e6f5862a32614bb91f8f3016MD5420.500.12955/2537oai:repositorio.inia.gob.pe:20.500.12955/25372025-03-09 10:22:07.723https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.949927 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).