Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley

Descripción del Articulo

Quality and safety of the soil are essential to ensure social and economic development and provides the supply of contaminant free food. With agriculture intensification, expansion of urban zones, construction of roads, and mining, some agricultural soils sites become polluted increasing environment...

Descripción completa

Detalles Bibliográficos
Autores: Pizarro Carcausto, Samuel, Vera Vilchez, Jesús Emilio, Huamani, Joseph, Cruz, Juancarlos, Lastra, Sphyros, Solórzano Acosta, Richard, Verástegui Martínez, Patricia
Formato: documento de trabajo
Fecha de Publicación:2024
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.inia.gob.pe:20.500.12955/2537
Enlace del recurso:https://hdl.handle.net/20.500.12955/2537
http://dx.doi.org/10.2139/ssrn.4777607
Nivel de acceso:acceso abierto
Materia:Random Forest
Soil mapping
Google Earth Engine
Machine learning
Cloud computing
https://purl.org/pe-repo/ocde/ford#4.01.04
Algorithms
Algoritmo
Soil surveys
Reconocimiento de suelos
Spatial data
Datos espaciales
Aprendizaje automático
id INIA_a6574dadf794f01ed75dfa3856cf36d5
oai_identifier_str oai:repositorio.inia.gob.pe:20.500.12955/2537
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.es_PE.fl_str_mv Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley
title Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley
spellingShingle Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley
Pizarro Carcausto, Samuel
Random Forest
Soil mapping
Google Earth Engine
Machine learning
Cloud computing
https://purl.org/pe-repo/ocde/ford#4.01.04
Algorithms
Algoritmo
Soil surveys
Reconocimiento de suelos
Spatial data
Datos espaciales
Machine learning
Aprendizaje automático
title_short Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley
title_full Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley
title_fullStr Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley
title_full_unstemmed Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley
title_sort Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley
author Pizarro Carcausto, Samuel
author_facet Pizarro Carcausto, Samuel
Vera Vilchez, Jesús Emilio
Huamani, Joseph
Cruz, Juancarlos
Lastra, Sphyros
Solórzano Acosta, Richard
Verástegui Martínez, Patricia
author_role author
author2 Vera Vilchez, Jesús Emilio
Huamani, Joseph
Cruz, Juancarlos
Lastra, Sphyros
Solórzano Acosta, Richard
Verástegui Martínez, Patricia
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Pizarro Carcausto, Samuel
Vera Vilchez, Jesús Emilio
Huamani, Joseph
Cruz, Juancarlos
Lastra, Sphyros
Solórzano Acosta, Richard
Verástegui Martínez, Patricia
dc.subject.es_PE.fl_str_mv Random Forest
Soil mapping
Google Earth Engine
Machine learning
Cloud computing
topic Random Forest
Soil mapping
Google Earth Engine
Machine learning
Cloud computing
https://purl.org/pe-repo/ocde/ford#4.01.04
Algorithms
Algoritmo
Soil surveys
Reconocimiento de suelos
Spatial data
Datos espaciales
Machine learning
Aprendizaje automático
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.01.04
dc.subject.agrovoc.es_PE.fl_str_mv Algorithms
Algoritmo
Soil surveys
Reconocimiento de suelos
Spatial data
Datos espaciales
Machine learning
Aprendizaje automático
description Quality and safety of the soil are essential to ensure social and economic development and provides the supply of contaminant free food. With agriculture intensification, expansion of urban zones, construction of roads, and mining, some agricultural soils sites become polluted increasing environmental risks to ecosystems functions and human health. Hence the need know the spatial distribution of elements in soils, we mapped 25 elements, namely Ca, Mg, Sr, Ba, Be, K, Na, As, Sb, Se, Tl, Cd, Zn, Al, Pb, Hg, Cr, Ni, Cu, Mo, Ag, Fe, Co, Mn and V, using various geospatial datasets, such as remote sensing, climate, topography, soil data, and distance, to establish the spatial estimation models of spatial distribution trained trough machine learning model with a supervised dataset of 109 topsoil samples, into Google earth engine platform. Using R2, RMSE and MAE to assess the prediction accuracy. First Random Forest gave satisfactory results in predicting the distribution of analyzed elements in soil, being improved for some elements when adds more trees. Additionally, each element analyzed has a different combination of environmental covariates as predictor, mainly soil, climate, topographic and distance variables especially croplands close to rivers, with less importance for spectral variables. Our results suggest that is possible to identify polluted soils and improved regulations to minimize harm to environmental health and human health, for short-to-medium-term environmental risk control.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-12T04:47:13Z
dc.date.available.none.fl_str_mv 2024-07-12T04:47:13Z
dc.date.issued.fl_str_mv 2024-03-29
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/workingPaper
format workingPaper
dc.identifier.citation.es_PE.fl_str_mv Pizarro-Carcausto, S.; Vera-Vilchez, J.; Huamani, J.; Cruz, J.; Lastra, S.; Solórzano-Acosta, R.; Verástegui-Martínez, P. (2024). Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley. SSRN. doi: 10.2139/ssrn.4777607
dc.identifier.issn.none.fl_str_mv 1556-5068
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12955/2537
dc.identifier.doi.none.fl_str_mv http://dx.doi.org/10.2139/ssrn.4777607
identifier_str_mv Pizarro-Carcausto, S.; Vera-Vilchez, J.; Huamani, J.; Cruz, J.; Lastra, S.; Solórzano-Acosta, R.; Verástegui-Martínez, P. (2024). Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley. SSRN. doi: 10.2139/ssrn.4777607
1556-5068
url https://hdl.handle.net/20.500.12955/2537
http://dx.doi.org/10.2139/ssrn.4777607
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.es_PE.fl_str_mv urn:issn: 1556-5068
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Elsevier
dc.publisher.country.es_PE.fl_str_mv US
dc.source.es_PE.fl_str_mv Instituto Nacional de Innovación Agraria
dc.source.none.fl_str_mv reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.es_PE.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/a5debc19-d15f-4243-91dc-877f61842220/download
https://repositorio.inia.gob.pe/bitstreams/41ac97d0-ac38-4fe4-bc21-2d78d7a2f880/download
https://repositorio.inia.gob.pe/bitstreams/5725dbc4-5680-4a97-ba3c-95326f514e3f/download
https://repositorio.inia.gob.pe/bitstreams/b3b7dd83-62bc-40fb-ac99-7830762312f8/download
bitstream.checksum.fl_str_mv 4b98b6a5e93f599f97f08e1f5c8c3a9e
8a4605be74aa9ea9d79846c1fba20a33
c8a547f3047c3667c932bae13e38b0bd
c56c52c1e6f5862a32614bb91f8f3016
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1834599923024134144
spelling Pizarro Carcausto, SamuelVera Vilchez, Jesús EmilioHuamani, JosephCruz, JuancarlosLastra, SphyrosSolórzano Acosta, RichardVerástegui Martínez, Patricia2024-07-12T04:47:13Z2024-07-12T04:47:13Z2024-03-29Pizarro-Carcausto, S.; Vera-Vilchez, J.; Huamani, J.; Cruz, J.; Lastra, S.; Solórzano-Acosta, R.; Verástegui-Martínez, P. (2024). Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley. SSRN. doi: 10.2139/ssrn.47776071556-5068https://hdl.handle.net/20.500.12955/2537http://dx.doi.org/10.2139/ssrn.4777607Quality and safety of the soil are essential to ensure social and economic development and provides the supply of contaminant free food. With agriculture intensification, expansion of urban zones, construction of roads, and mining, some agricultural soils sites become polluted increasing environmental risks to ecosystems functions and human health. Hence the need know the spatial distribution of elements in soils, we mapped 25 elements, namely Ca, Mg, Sr, Ba, Be, K, Na, As, Sb, Se, Tl, Cd, Zn, Al, Pb, Hg, Cr, Ni, Cu, Mo, Ag, Fe, Co, Mn and V, using various geospatial datasets, such as remote sensing, climate, topography, soil data, and distance, to establish the spatial estimation models of spatial distribution trained trough machine learning model with a supervised dataset of 109 topsoil samples, into Google earth engine platform. Using R2, RMSE and MAE to assess the prediction accuracy. First Random Forest gave satisfactory results in predicting the distribution of analyzed elements in soil, being improved for some elements when adds more trees. Additionally, each element analyzed has a different combination of environmental covariates as predictor, mainly soil, climate, topographic and distance variables especially croplands close to rivers, with less importance for spectral variables. Our results suggest that is possible to identify polluted soils and improved regulations to minimize harm to environmental health and human health, for short-to-medium-term environmental risk control.application/pdfengElsevierUSurn:issn: 1556-5068info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIARandom ForestSoil mappingGoogle Earth EngineMachine learningCloud computinghttps://purl.org/pe-repo/ocde/ford#4.01.04AlgorithmsAlgoritmoSoil surveysReconocimiento de suelosSpatial dataDatos espacialesMachine learningAprendizaje automáticoDigital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valleyinfo:eu-repo/semantics/workingPaperORIGINALPizarro_et-al_2024_metals_mapping.pdfPizarro_et-al_2024_metals_mapping.pdfapplication/pdf5905228https://repositorio.inia.gob.pe/bitstreams/a5debc19-d15f-4243-91dc-877f61842220/download4b98b6a5e93f599f97f08e1f5c8c3a9eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/41ac97d0-ac38-4fe4-bc21-2d78d7a2f880/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTPizarro_et-al_2024_metals_mapping.pdf.txtPizarro_et-al_2024_metals_mapping.pdf.txtExtracted texttext/plain55712https://repositorio.inia.gob.pe/bitstreams/5725dbc4-5680-4a97-ba3c-95326f514e3f/downloadc8a547f3047c3667c932bae13e38b0bdMD53THUMBNAILPizarro_et-al_2024_metals_mapping.pdf.jpgPizarro_et-al_2024_metals_mapping.pdf.jpgGenerated Thumbnailimage/jpeg1503https://repositorio.inia.gob.pe/bitstreams/b3b7dd83-62bc-40fb-ac99-7830762312f8/downloadc56c52c1e6f5862a32614bb91f8f3016MD5420.500.12955/2537oai:repositorio.inia.gob.pe:20.500.12955/25372025-03-09 10:22:07.723https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.949927
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).