Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging
Descripción del Articulo
Accurate and timely estimation of oat biomass is crucial for the development of sustainable and efficient agricultural practices. This research focused on estimating and predicting forage oat biomass using UAV and agronomic variables. A Matrice 300 equipped with a multispectral camera was used for 1...
Autores: | , , , , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Instituto Nacional de Innovación Agraria |
Repositorio: | INIA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:null:20.500.12955/2599 |
Enlace del recurso: | https://hdl.handle.net/20.500.12955/2599 https://doi.org/10.3390/rs16193720 |
Nivel de acceso: | acceso abierto |
Materia: | Germination rate Machine learning Remote sensing Photogrammetry Vegetation indices https://purl.org/pe-repo/ocde/ford#4.01.06 Germinability Poder germinativo Aprendizaje automatico Teledeteccion Fotogrametría Vegetation index Índice de vegetación |
id |
INIA_6b74e3ea2fcc79a93072a258ea3c50c2 |
---|---|
oai_identifier_str |
oai:null:20.500.12955/2599 |
network_acronym_str |
INIA |
network_name_str |
INIA-Institucional |
repository_id_str |
4830 |
dc.title.es_PE.fl_str_mv |
Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging |
title |
Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging |
spellingShingle |
Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging Urquizo Barrera, Julio Cesar Germination rate Machine learning Remote sensing Photogrammetry Vegetation indices https://purl.org/pe-repo/ocde/ford#4.01.06 Germinability Poder germinativo Machine learning Aprendizaje automatico Remote sensing Teledeteccion Photogrammetry Fotogrametría Vegetation index Índice de vegetación |
title_short |
Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging |
title_full |
Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging |
title_fullStr |
Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging |
title_full_unstemmed |
Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging |
title_sort |
Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging |
author |
Urquizo Barrera, Julio Cesar |
author_facet |
Urquizo Barrera, Julio Cesar Ccopi Trucios, Dennis Ortega Quispe, Kevin Castañeda Tinco, Italo Patricio Rosales, Solanch Passuni Huayta, Jorge Figueroa Venegas, Deyanira Enriquez Pinedo, Lucia Ore Aquino, Zoila Pizarro Carcausto, Samuel |
author_role |
author |
author2 |
Ccopi Trucios, Dennis Ortega Quispe, Kevin Castañeda Tinco, Italo Patricio Rosales, Solanch Passuni Huayta, Jorge Figueroa Venegas, Deyanira Enriquez Pinedo, Lucia Ore Aquino, Zoila Pizarro Carcausto, Samuel |
author2_role |
author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Urquizo Barrera, Julio Cesar Ccopi Trucios, Dennis Ortega Quispe, Kevin Castañeda Tinco, Italo Patricio Rosales, Solanch Passuni Huayta, Jorge Figueroa Venegas, Deyanira Enriquez Pinedo, Lucia Ore Aquino, Zoila Pizarro Carcausto, Samuel |
dc.subject.es_PE.fl_str_mv |
Germination rate Machine learning Remote sensing Photogrammetry Vegetation indices |
topic |
Germination rate Machine learning Remote sensing Photogrammetry Vegetation indices https://purl.org/pe-repo/ocde/ford#4.01.06 Germinability Poder germinativo Machine learning Aprendizaje automatico Remote sensing Teledeteccion Photogrammetry Fotogrametría Vegetation index Índice de vegetación |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#4.01.06 |
dc.subject.agrovoc.es_PE.fl_str_mv |
Germinability Poder germinativo Machine learning Aprendizaje automatico Remote sensing Teledeteccion Photogrammetry Fotogrametría Vegetation index Índice de vegetación |
description |
Accurate and timely estimation of oat biomass is crucial for the development of sustainable and efficient agricultural practices. This research focused on estimating and predicting forage oat biomass using UAV and agronomic variables. A Matrice 300 equipped with a multispectral camera was used for 14 flights, capturing 21 spectral indices per flight. Concurrently, agronomic data were collected at six stages synchronized with UAV flights. Data analysis involved correlations and Principal Component Analysis (PCA) to identify significant variables. Predictive models for forage biomass were developed using various machine learning techniques: linear regression, Random Forests (RFs), Support Vector Machines (SVMs), and Neural Networks (NNs). The Random Forest model showed the best performance, with a coefficient of determination R2 of 0.52 on the test set, followed by Support Vector Machines with an R2 of 0.50. Differences in root mean square error (RMSE) and mean absolute error (MAE) among the models highlighted variations in prediction accuracy. This study underscores the effectiveness of photogrammetry, UAV, and machine learning in estimating forage biomass, demonstrating that the proposed approach can provide relatively accurate estimations for this purpose. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-10-24T17:07:01Z |
dc.date.available.none.fl_str_mv |
2024-10-24T17:07:01Z |
dc.date.issued.fl_str_mv |
2024-10-06 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.es_PE.fl_str_mv |
Urquizo-Barrera, J.; Ccopi-Trucios, D.; Ortega-Quispe, K.; Castañeda-Tinco, I.; Patricio-Rosales, S.; Passuni-Huayta, J.; Figueroa-Venegas, D.; Enriquez-Pinedo, L.; Ore-Aquino, Z.; & Pizarro-Carcausto, S. (2024). Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging. Remote sensing,16, 3720. doi:10.3390/rs16193720 |
dc.identifier.issn.none.fl_str_mv |
2072-4292 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12955/2599 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/rs16193720 |
identifier_str_mv |
Urquizo-Barrera, J.; Ccopi-Trucios, D.; Ortega-Quispe, K.; Castañeda-Tinco, I.; Patricio-Rosales, S.; Passuni-Huayta, J.; Figueroa-Venegas, D.; Enriquez-Pinedo, L.; Ore-Aquino, Z.; & Pizarro-Carcausto, S. (2024). Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging. Remote sensing,16, 3720. doi:10.3390/rs16193720 2072-4292 |
url |
https://hdl.handle.net/20.500.12955/2599 https://doi.org/10.3390/rs16193720 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.es_PE.fl_str_mv |
urn:issn:2072-4292 |
dc.relation.ispartofseries.es_PE.fl_str_mv |
Remote sensing |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
MDPI |
dc.publisher.country.es_PE.fl_str_mv |
CH |
dc.source.es_PE.fl_str_mv |
Instituto Nacional de Innovación Agraria |
dc.source.none.fl_str_mv |
reponame:INIA-Institucional instname:Instituto Nacional de Innovación Agraria instacron:INIA |
instname_str |
Instituto Nacional de Innovación Agraria |
instacron_str |
INIA |
institution |
INIA |
reponame_str |
INIA-Institucional |
collection |
INIA-Institucional |
dc.source.uri.es_PE.fl_str_mv |
Repositorio Institucional - INIA |
bitstream.url.fl_str_mv |
https://repositorio.inia.gob.pe/bitstreams/5830fcbe-4174-4a41-8d1e-b2b1c9117dad/download https://repositorio.inia.gob.pe/bitstreams/3e07d3b0-20cd-44e0-baa1-ff3bfbc3c96f/download https://repositorio.inia.gob.pe/bitstreams/3853ba4d-7f45-4215-84c1-50c88c8df4ad/download https://repositorio.inia.gob.pe/bitstreams/7d76565f-1570-4fb4-a3ab-415cf7d4e4b3/download |
bitstream.checksum.fl_str_mv |
6e6f39a2fafb62db97e3e8343b406cf1 8a4605be74aa9ea9d79846c1fba20a33 31ba0e351ca71ef10f2043d63c2b555e 6b6c021db0cdfa43758384aee85f25ca |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional INIA |
repository.mail.fl_str_mv |
repositorio@inia.gob.pe |
_version_ |
1833331747572416512 |
spelling |
Urquizo Barrera, Julio CesarCcopi Trucios, DennisOrtega Quispe, KevinCastañeda Tinco, ItaloPatricio Rosales, SolanchPassuni Huayta, JorgeFigueroa Venegas, DeyaniraEnriquez Pinedo, LuciaOre Aquino, ZoilaPizarro Carcausto, Samuel2024-10-24T17:07:01Z2024-10-24T17:07:01Z2024-10-06Urquizo-Barrera, J.; Ccopi-Trucios, D.; Ortega-Quispe, K.; Castañeda-Tinco, I.; Patricio-Rosales, S.; Passuni-Huayta, J.; Figueroa-Venegas, D.; Enriquez-Pinedo, L.; Ore-Aquino, Z.; & Pizarro-Carcausto, S. (2024). Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging. Remote sensing,16, 3720. doi:10.3390/rs161937202072-4292https://hdl.handle.net/20.500.12955/2599https://doi.org/10.3390/rs16193720Accurate and timely estimation of oat biomass is crucial for the development of sustainable and efficient agricultural practices. This research focused on estimating and predicting forage oat biomass using UAV and agronomic variables. A Matrice 300 equipped with a multispectral camera was used for 14 flights, capturing 21 spectral indices per flight. Concurrently, agronomic data were collected at six stages synchronized with UAV flights. Data analysis involved correlations and Principal Component Analysis (PCA) to identify significant variables. Predictive models for forage biomass were developed using various machine learning techniques: linear regression, Random Forests (RFs), Support Vector Machines (SVMs), and Neural Networks (NNs). The Random Forest model showed the best performance, with a coefficient of determination R2 of 0.52 on the test set, followed by Support Vector Machines with an R2 of 0.50. Differences in root mean square error (RMSE) and mean absolute error (MAE) among the models highlighted variations in prediction accuracy. This study underscores the effectiveness of photogrammetry, UAV, and machine learning in estimating forage biomass, demonstrating that the proposed approach can provide relatively accurate estimations for this purpose.This research was funded by the project “Creación del servicio de agricultura de precision en los Departamentos de Lambayeque, Huancavelica, Ucayali y San Martín 4 Departamentos” of the Ministry of Agrarian Development and Irrigation (MIDAGRI) of the Peruvian Government with grant number CUI 2449640.application/pdfengMDPICHurn:issn:2072-4292Remote sensinginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIAGermination rateMachine learningRemote sensingPhotogrammetryVegetation indiceshttps://purl.org/pe-repo/ocde/ford#4.01.06GerminabilityPoder germinativoMachine learningAprendizaje automaticoRemote sensingTeledeteccionPhotogrammetryFotogrametríaVegetation indexÍndice de vegetaciónEstimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaginginfo:eu-repo/semantics/articleORIGINALUrquizo_et-al_2024_estimation_oat_UAV.pdfUrquizo_et-al_2024_estimation_oat_UAV.pdfapplication/pdf8524439https://repositorio.inia.gob.pe/bitstreams/5830fcbe-4174-4a41-8d1e-b2b1c9117dad/download6e6f39a2fafb62db97e3e8343b406cf1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/3e07d3b0-20cd-44e0-baa1-ff3bfbc3c96f/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTUrquizo_et-al_2024_estimation_oat_UAV.pdf.txtUrquizo_et-al_2024_estimation_oat_UAV.pdf.txtExtracted texttext/plain87263https://repositorio.inia.gob.pe/bitstreams/3853ba4d-7f45-4215-84c1-50c88c8df4ad/download31ba0e351ca71ef10f2043d63c2b555eMD53THUMBNAILUrquizo_et-al_2024_estimation_oat_UAV.pdf.jpgUrquizo_et-al_2024_estimation_oat_UAV.pdf.jpgGenerated Thumbnailimage/jpeg1620https://repositorio.inia.gob.pe/bitstreams/7d76565f-1570-4fb4-a3ab-415cf7d4e4b3/download6b6c021db0cdfa43758384aee85f25caMD5420.500.12955/2599oai:repositorio.inia.gob.pe:20.500.12955/25992024-10-24 12:07:03.374https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.95948 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).