Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging

Descripción del Articulo

Accurate and timely estimation of oat biomass is crucial for the development of sustainable and efficient agricultural practices. This research focused on estimating and predicting forage oat biomass using UAV and agronomic variables. A Matrice 300 equipped with a multispectral camera was used for 1...

Descripción completa

Detalles Bibliográficos
Autores: Urquizo Barrera, Julio Cesar, Ccopi Trucios, Dennis, Ortega Quispe, Kevin, Castañeda Tinco, Italo, Patricio Rosales, Solanch, Passuni Huayta, Jorge, Figueroa Venegas, Deyanira, Enriquez Pinedo, Lucia, Ore Aquino, Zoila, Pizarro Carcausto, Samuel
Formato: artículo
Fecha de Publicación:2024
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:null:20.500.12955/2599
Enlace del recurso:https://hdl.handle.net/20.500.12955/2599
https://doi.org/10.3390/rs16193720
Nivel de acceso:acceso abierto
Materia:Germination rate
Machine learning
Remote sensing
Photogrammetry
Vegetation indices
https://purl.org/pe-repo/ocde/ford#4.01.06
Germinability
Poder germinativo
Aprendizaje automatico
Teledeteccion
Fotogrametría
Vegetation index
Índice de vegetación
id INIA_6b74e3ea2fcc79a93072a258ea3c50c2
oai_identifier_str oai:null:20.500.12955/2599
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.es_PE.fl_str_mv Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging
title Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging
spellingShingle Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging
Urquizo Barrera, Julio Cesar
Germination rate
Machine learning
Remote sensing
Photogrammetry
Vegetation indices
https://purl.org/pe-repo/ocde/ford#4.01.06
Germinability
Poder germinativo
Machine learning
Aprendizaje automatico
Remote sensing
Teledeteccion
Photogrammetry
Fotogrametría
Vegetation index
Índice de vegetación
title_short Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging
title_full Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging
title_fullStr Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging
title_full_unstemmed Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging
title_sort Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging
author Urquizo Barrera, Julio Cesar
author_facet Urquizo Barrera, Julio Cesar
Ccopi Trucios, Dennis
Ortega Quispe, Kevin
Castañeda Tinco, Italo
Patricio Rosales, Solanch
Passuni Huayta, Jorge
Figueroa Venegas, Deyanira
Enriquez Pinedo, Lucia
Ore Aquino, Zoila
Pizarro Carcausto, Samuel
author_role author
author2 Ccopi Trucios, Dennis
Ortega Quispe, Kevin
Castañeda Tinco, Italo
Patricio Rosales, Solanch
Passuni Huayta, Jorge
Figueroa Venegas, Deyanira
Enriquez Pinedo, Lucia
Ore Aquino, Zoila
Pizarro Carcausto, Samuel
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Urquizo Barrera, Julio Cesar
Ccopi Trucios, Dennis
Ortega Quispe, Kevin
Castañeda Tinco, Italo
Patricio Rosales, Solanch
Passuni Huayta, Jorge
Figueroa Venegas, Deyanira
Enriquez Pinedo, Lucia
Ore Aquino, Zoila
Pizarro Carcausto, Samuel
dc.subject.es_PE.fl_str_mv Germination rate
Machine learning
Remote sensing
Photogrammetry
Vegetation indices
topic Germination rate
Machine learning
Remote sensing
Photogrammetry
Vegetation indices
https://purl.org/pe-repo/ocde/ford#4.01.06
Germinability
Poder germinativo
Machine learning
Aprendizaje automatico
Remote sensing
Teledeteccion
Photogrammetry
Fotogrametría
Vegetation index
Índice de vegetación
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.01.06
dc.subject.agrovoc.es_PE.fl_str_mv Germinability
Poder germinativo
Machine learning
Aprendizaje automatico
Remote sensing
Teledeteccion
Photogrammetry
Fotogrametría
Vegetation index
Índice de vegetación
description Accurate and timely estimation of oat biomass is crucial for the development of sustainable and efficient agricultural practices. This research focused on estimating and predicting forage oat biomass using UAV and agronomic variables. A Matrice 300 equipped with a multispectral camera was used for 14 flights, capturing 21 spectral indices per flight. Concurrently, agronomic data were collected at six stages synchronized with UAV flights. Data analysis involved correlations and Principal Component Analysis (PCA) to identify significant variables. Predictive models for forage biomass were developed using various machine learning techniques: linear regression, Random Forests (RFs), Support Vector Machines (SVMs), and Neural Networks (NNs). The Random Forest model showed the best performance, with a coefficient of determination R2 of 0.52 on the test set, followed by Support Vector Machines with an R2 of 0.50. Differences in root mean square error (RMSE) and mean absolute error (MAE) among the models highlighted variations in prediction accuracy. This study underscores the effectiveness of photogrammetry, UAV, and machine learning in estimating forage biomass, demonstrating that the proposed approach can provide relatively accurate estimations for this purpose.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-24T17:07:01Z
dc.date.available.none.fl_str_mv 2024-10-24T17:07:01Z
dc.date.issued.fl_str_mv 2024-10-06
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Urquizo-Barrera, J.; Ccopi-Trucios, D.; Ortega-Quispe, K.; Castañeda-Tinco, I.; Patricio-Rosales, S.; Passuni-Huayta, J.; Figueroa-Venegas, D.; Enriquez-Pinedo, L.; Ore-Aquino, Z.; & Pizarro-Carcausto, S. (2024). Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging. Remote sensing,16, 3720. doi:10.3390/rs16193720
dc.identifier.issn.none.fl_str_mv 2072-4292
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12955/2599
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/rs16193720
identifier_str_mv Urquizo-Barrera, J.; Ccopi-Trucios, D.; Ortega-Quispe, K.; Castañeda-Tinco, I.; Patricio-Rosales, S.; Passuni-Huayta, J.; Figueroa-Venegas, D.; Enriquez-Pinedo, L.; Ore-Aquino, Z.; & Pizarro-Carcausto, S. (2024). Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging. Remote sensing,16, 3720. doi:10.3390/rs16193720
2072-4292
url https://hdl.handle.net/20.500.12955/2599
https://doi.org/10.3390/rs16193720
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.es_PE.fl_str_mv urn:issn:2072-4292
dc.relation.ispartofseries.es_PE.fl_str_mv Remote sensing
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv MDPI
dc.publisher.country.es_PE.fl_str_mv CH
dc.source.es_PE.fl_str_mv Instituto Nacional de Innovación Agraria
dc.source.none.fl_str_mv reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.es_PE.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/5830fcbe-4174-4a41-8d1e-b2b1c9117dad/download
https://repositorio.inia.gob.pe/bitstreams/3e07d3b0-20cd-44e0-baa1-ff3bfbc3c96f/download
https://repositorio.inia.gob.pe/bitstreams/3853ba4d-7f45-4215-84c1-50c88c8df4ad/download
https://repositorio.inia.gob.pe/bitstreams/7d76565f-1570-4fb4-a3ab-415cf7d4e4b3/download
bitstream.checksum.fl_str_mv 6e6f39a2fafb62db97e3e8343b406cf1
8a4605be74aa9ea9d79846c1fba20a33
31ba0e351ca71ef10f2043d63c2b555e
6b6c021db0cdfa43758384aee85f25ca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1833331747572416512
spelling Urquizo Barrera, Julio CesarCcopi Trucios, DennisOrtega Quispe, KevinCastañeda Tinco, ItaloPatricio Rosales, SolanchPassuni Huayta, JorgeFigueroa Venegas, DeyaniraEnriquez Pinedo, LuciaOre Aquino, ZoilaPizarro Carcausto, Samuel2024-10-24T17:07:01Z2024-10-24T17:07:01Z2024-10-06Urquizo-Barrera, J.; Ccopi-Trucios, D.; Ortega-Quispe, K.; Castañeda-Tinco, I.; Patricio-Rosales, S.; Passuni-Huayta, J.; Figueroa-Venegas, D.; Enriquez-Pinedo, L.; Ore-Aquino, Z.; & Pizarro-Carcausto, S. (2024). Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging. Remote sensing,16, 3720. doi:10.3390/rs161937202072-4292https://hdl.handle.net/20.500.12955/2599https://doi.org/10.3390/rs16193720Accurate and timely estimation of oat biomass is crucial for the development of sustainable and efficient agricultural practices. This research focused on estimating and predicting forage oat biomass using UAV and agronomic variables. A Matrice 300 equipped with a multispectral camera was used for 14 flights, capturing 21 spectral indices per flight. Concurrently, agronomic data were collected at six stages synchronized with UAV flights. Data analysis involved correlations and Principal Component Analysis (PCA) to identify significant variables. Predictive models for forage biomass were developed using various machine learning techniques: linear regression, Random Forests (RFs), Support Vector Machines (SVMs), and Neural Networks (NNs). The Random Forest model showed the best performance, with a coefficient of determination R2 of 0.52 on the test set, followed by Support Vector Machines with an R2 of 0.50. Differences in root mean square error (RMSE) and mean absolute error (MAE) among the models highlighted variations in prediction accuracy. This study underscores the effectiveness of photogrammetry, UAV, and machine learning in estimating forage biomass, demonstrating that the proposed approach can provide relatively accurate estimations for this purpose.This research was funded by the project “Creación del servicio de agricultura de precision en los Departamentos de Lambayeque, Huancavelica, Ucayali y San Martín 4 Departamentos” of the Ministry of Agrarian Development and Irrigation (MIDAGRI) of the Peruvian Government with grant number CUI 2449640.application/pdfengMDPICHurn:issn:2072-4292Remote sensinginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIAGermination rateMachine learningRemote sensingPhotogrammetryVegetation indiceshttps://purl.org/pe-repo/ocde/ford#4.01.06GerminabilityPoder germinativoMachine learningAprendizaje automaticoRemote sensingTeledeteccionPhotogrammetryFotogrametríaVegetation indexÍndice de vegetaciónEstimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaginginfo:eu-repo/semantics/articleORIGINALUrquizo_et-al_2024_estimation_oat_UAV.pdfUrquizo_et-al_2024_estimation_oat_UAV.pdfapplication/pdf8524439https://repositorio.inia.gob.pe/bitstreams/5830fcbe-4174-4a41-8d1e-b2b1c9117dad/download6e6f39a2fafb62db97e3e8343b406cf1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/3e07d3b0-20cd-44e0-baa1-ff3bfbc3c96f/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTUrquizo_et-al_2024_estimation_oat_UAV.pdf.txtUrquizo_et-al_2024_estimation_oat_UAV.pdf.txtExtracted texttext/plain87263https://repositorio.inia.gob.pe/bitstreams/3853ba4d-7f45-4215-84c1-50c88c8df4ad/download31ba0e351ca71ef10f2043d63c2b555eMD53THUMBNAILUrquizo_et-al_2024_estimation_oat_UAV.pdf.jpgUrquizo_et-al_2024_estimation_oat_UAV.pdf.jpgGenerated Thumbnailimage/jpeg1620https://repositorio.inia.gob.pe/bitstreams/7d76565f-1570-4fb4-a3ab-415cf7d4e4b3/download6b6c021db0cdfa43758384aee85f25caMD5420.500.12955/2599oai:repositorio.inia.gob.pe:20.500.12955/25992024-10-24 12:07:03.374https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.95948
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).