Using biometric analysis to estimate body weight in Creole goats
Descripción del Articulo
Background: Creole goat husbandry for milk and meat improves food security in rural areas in Perú. Body weight (BW) is a key trait for selecting breeding stock, and it is estimated to be using algorithms. Likewise, BW is common in livestock farming. Aim: This study aimed to compare BW prediction mod...
| Autores: | , , , , , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2025 |
| Institución: | Instituto Nacional de Innovación Agraria |
| Repositorio: | INIA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.inia.gob.pe:20.500.12955/2910 |
| Enlace del recurso: | http://hdl.handle.net/20.500.12955/2910 https://doi.org/10.5455/OVJ.2025.v15.i9.55 |
| Nivel de acceso: | acceso abierto |
| Materia: | Algorithms Creole Machine learning Predictive models Morphometrics goats Algoritmos Criollo Aprendizaje automático Modelos predictivos Morfometría de cabras https://purl.org/pe-repo/ocde/ford#4.03.01 Body weight; Peso corporal; Animal morphology; Morfología animal; Body measurements; Morfología animal |
| id |
INIA_5e6d1d6d478fa9e6cac2945f604dead2 |
|---|---|
| oai_identifier_str |
oai:repositorio.inia.gob.pe:20.500.12955/2910 |
| network_acronym_str |
INIA |
| network_name_str |
INIA-Institucional |
| repository_id_str |
4830 |
| dc.title.none.fl_str_mv |
Using biometric analysis to estimate body weight in Creole goats |
| title |
Using biometric analysis to estimate body weight in Creole goats |
| spellingShingle |
Using biometric analysis to estimate body weight in Creole goats Trillo Zárate, Fritz Carlos Algorithms Creole Machine learning Predictive models Morphometrics goats Algoritmos Criollo Aprendizaje automático Modelos predictivos Morfometría de cabras https://purl.org/pe-repo/ocde/ford#4.03.01 Body weight; Peso corporal; Animal morphology; Morfología animal; Body measurements; Morfología animal |
| title_short |
Using biometric analysis to estimate body weight in Creole goats |
| title_full |
Using biometric analysis to estimate body weight in Creole goats |
| title_fullStr |
Using biometric analysis to estimate body weight in Creole goats |
| title_full_unstemmed |
Using biometric analysis to estimate body weight in Creole goats |
| title_sort |
Using biometric analysis to estimate body weight in Creole goats |
| author |
Trillo Zárate, Fritz Carlos |
| author_facet |
Trillo Zárate, Fritz Carlos Paredes Chocce, Miguel Enrique Salinas Marcos, Jorge Temoche Socola, Víctor Alexander Tafur Gutiérrez, Lucinda Sessarego Dávila, Emmanuel Alexander Acosta Granados, Irene Carol Palomino Guerrera, Walter Cruz Luis, Juancarlos Alejandro Ruiz Chamorro, Jose Antonio |
| author_role |
author |
| author2 |
Paredes Chocce, Miguel Enrique Salinas Marcos, Jorge Temoche Socola, Víctor Alexander Tafur Gutiérrez, Lucinda Sessarego Dávila, Emmanuel Alexander Acosta Granados, Irene Carol Palomino Guerrera, Walter Cruz Luis, Juancarlos Alejandro Ruiz Chamorro, Jose Antonio |
| author2_role |
author author author author author author author author author |
| dc.contributor.author.fl_str_mv |
Trillo Zárate, Fritz Carlos Paredes Chocce, Miguel Enrique Salinas Marcos, Jorge Temoche Socola, Víctor Alexander Tafur Gutiérrez, Lucinda Sessarego Dávila, Emmanuel Alexander Acosta Granados, Irene Carol Palomino Guerrera, Walter Cruz Luis, Juancarlos Alejandro Ruiz Chamorro, Jose Antonio |
| dc.subject.none.fl_str_mv |
Algorithms Creole Machine learning Predictive models Morphometrics goats Algoritmos Criollo Aprendizaje automático Modelos predictivos Morfometría de cabras |
| topic |
Algorithms Creole Machine learning Predictive models Morphometrics goats Algoritmos Criollo Aprendizaje automático Modelos predictivos Morfometría de cabras https://purl.org/pe-repo/ocde/ford#4.03.01 Body weight; Peso corporal; Animal morphology; Morfología animal; Body measurements; Morfología animal |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#4.03.01 |
| dc.subject.agrovoc.none.fl_str_mv |
Body weight; Peso corporal; Animal morphology; Morfología animal; Body measurements; Morfología animal |
| description |
Background: Creole goat husbandry for milk and meat improves food security in rural areas in Perú. Body weight (BW) is a key trait for selecting breeding stock, and it is estimated to be using algorithms. Likewise, BW is common in livestock farming. Aim: This study aimed to compare BW prediction models using a data mining algorithm in Creole goats, considering their biometric measurements. Methods: Data from 1,075 females aged between 1 and 4 years were used. Measurements of chest width, thoracic perimeter, wither height, sacrum height, rump width and length, body length, cannon bone perimeter, age, and region of the herd were recorded. The regression trees (classification and regression tree), support vector regression (SVR), and random forest regression (RFR) algorithms were used. Results: The SVR was better at predicting BWs in Creole goat herds. Similarly, the results were stable during training (R² = 0.765) and testing (R² = 0.707). However, it should be noted that RFR performed better with training data (R² = 0.942). Conclusion: The proposed predictive models have demonstrated significant potential for accurately predicting BW based on biometric data. Finally, it contributes to better selection, feeding, and sanitary management of Creole goats. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-10-20T16:13:17Z |
| dc.date.available.none.fl_str_mv |
2025-10-20T16:13:17Z |
| dc.date.issued.fl_str_mv |
2025-09-30 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.none.fl_str_mv |
Trillo-Zárate, F., Paredes-Chocce, M. E., Salinas, J., Temoche-Socola, V. A., Tafur Gutiérrez, L., Sessarego, E. A., Acosta, I., Palomino-Guerrera, W., Cruz-Luis, J. A., & Ruiz-Chamorro, J. A. (2025). Using biometric analysis to estimate body weight in Creole goats. Open Veterinary Journal, 15(9), 4496-4504. https://doi.org/10.5455/OVJ.2025.v15.i9.55 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12955/2910 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.5455/OVJ.2025.v15.i9.55 |
| identifier_str_mv |
Trillo-Zárate, F., Paredes-Chocce, M. E., Salinas, J., Temoche-Socola, V. A., Tafur Gutiérrez, L., Sessarego, E. A., Acosta, I., Palomino-Guerrera, W., Cruz-Luis, J. A., & Ruiz-Chamorro, J. A. (2025). Using biometric analysis to estimate body weight in Creole goats. Open Veterinary Journal, 15(9), 4496-4504. https://doi.org/10.5455/OVJ.2025.v15.i9.55 |
| url |
http://hdl.handle.net/20.500.12955/2910 https://doi.org/10.5455/OVJ.2025.v15.i9.55 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
urn:issn:2226-4485 |
| dc.relation.ispartofseries.none.fl_str_mv |
Open Veterinary Journal |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/nc/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/nc/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Eldaghayes Publisher |
| dc.publisher.country.none.fl_str_mv |
LY |
| publisher.none.fl_str_mv |
Eldaghayes Publisher |
| dc.source.none.fl_str_mv |
Instituto Nacional de Innovación Agraria reponame:INIA-Institucional instname:Instituto Nacional de Innovación Agraria instacron:INIA |
| instname_str |
Instituto Nacional de Innovación Agraria |
| instacron_str |
INIA |
| institution |
INIA |
| reponame_str |
INIA-Institucional |
| collection |
INIA-Institucional |
| dc.source.uri.none.fl_str_mv |
Repositorio Institucional - INIA |
| bitstream.url.fl_str_mv |
https://repositorio.inia.gob.pe/bitstreams/869d0f3a-0d37-48df-acf0-680ae4e70ab3/download https://repositorio.inia.gob.pe/bitstreams/c2c71435-c660-4978-8a93-cef7c1f18fc4/download |
| bitstream.checksum.fl_str_mv |
a1dff3722e05e29dac20fa1a97a12ccf 1d91b4c46c6f61051b9921ad8b9515ec |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional INIA |
| repository.mail.fl_str_mv |
repositorio@inia.gob.pe |
| _version_ |
1846649321450110976 |
| spelling |
Trillo Zárate, Fritz CarlosParedes Chocce, Miguel EnriqueSalinas Marcos, JorgeTemoche Socola, Víctor AlexanderTafur Gutiérrez, LucindaSessarego Dávila, Emmanuel AlexanderAcosta Granados, Irene CarolPalomino Guerrera, WalterCruz Luis, Juancarlos AlejandroRuiz Chamorro, Jose Antonio2025-10-20T16:13:17Z2025-10-20T16:13:17Z2025-09-30Trillo-Zárate, F., Paredes-Chocce, M. E., Salinas, J., Temoche-Socola, V. A., Tafur Gutiérrez, L., Sessarego, E. A., Acosta, I., Palomino-Guerrera, W., Cruz-Luis, J. A., & Ruiz-Chamorro, J. A. (2025). Using biometric analysis to estimate body weight in Creole goats. Open Veterinary Journal, 15(9), 4496-4504. https://doi.org/10.5455/OVJ.2025.v15.i9.55http://hdl.handle.net/20.500.12955/2910https://doi.org/10.5455/OVJ.2025.v15.i9.55Background: Creole goat husbandry for milk and meat improves food security in rural areas in Perú. Body weight (BW) is a key trait for selecting breeding stock, and it is estimated to be using algorithms. Likewise, BW is common in livestock farming. Aim: This study aimed to compare BW prediction models using a data mining algorithm in Creole goats, considering their biometric measurements. Methods: Data from 1,075 females aged between 1 and 4 years were used. Measurements of chest width, thoracic perimeter, wither height, sacrum height, rump width and length, body length, cannon bone perimeter, age, and region of the herd were recorded. The regression trees (classification and regression tree), support vector regression (SVR), and random forest regression (RFR) algorithms were used. Results: The SVR was better at predicting BWs in Creole goat herds. Similarly, the results were stable during training (R² = 0.765) and testing (R² = 0.707). However, it should be noted that RFR performed better with training data (R² = 0.942). Conclusion: The proposed predictive models have demonstrated significant potential for accurately predicting BW based on biometric data. Finally, it contributes to better selection, feeding, and sanitary management of Creole goats.This study received financial support from the project entitled "Improvement of Research and Technology Transfer" Services for the Sustainable Management of Goat Livestock in Dry Forests and the Central Coast across the following departments: Tumbes, Piura, Lambayeque, Amazonas, La Libertad, Ancash, Ayacucho, Ica, and Lima, with CUI 2506684, facilitated by the National Institute of Agrarian Innovation.application/pdfengEldaghayes PublisherLYurn:issn:2226-4485Open Veterinary Journalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/nc/4.0/Instituto Nacional de Innovación Agrariareponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIARepositorio Institucional - INIAAlgorithmsCreoleMachine learningPredictive modelsMorphometrics goatsAlgoritmosCriolloAprendizaje automáticoModelos predictivosMorfometría de cabrashttps://purl.org/pe-repo/ocde/ford#4.03.01Body weight; Peso corporal; Animal morphology; Morfología animal; Body measurements; Morfología animalUsing biometric analysis to estimate body weight in Creole goatsinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81792https://repositorio.inia.gob.pe/bitstreams/869d0f3a-0d37-48df-acf0-680ae4e70ab3/downloada1dff3722e05e29dac20fa1a97a12ccfMD51ORIGINALFritz_et-al_2025_biometric_creole_goats.pdfFritz_et-al_2025_biometric_creole_goats.pdfapplication/pdf430428https://repositorio.inia.gob.pe/bitstreams/c2c71435-c660-4978-8a93-cef7c1f18fc4/download1d91b4c46c6f61051b9921ad8b9515ecMD5120.500.12955/2910oai:repositorio.inia.gob.pe:20.500.12955/29102025-10-20 11:13:17.293https://creativecommons.org/licenses/by/nc/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9UQTogQ09MT1FVRSBTVSBQUk9QSUEgTElDRU5DSUEgQVFVw40KRXN0YSBsaWNlbmNpYSBkZSBtdWVzdHJhIHNlIHByb3BvcmNpb25hIMO6bmljYW1lbnRlIGNvbiBmaW5lcyBpbmZvcm1hdGl2b3MuCgpMSUNFTkNJQSBERSBESVNUUklCVUNJw5NOIE5PIEVYQ0xVU0lWQQpBbCBmaXJtYXIgeSBlbnZpYXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yIG8gcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBvdG9yZ2EgYSBEU3BhY2UgVW5pdmVyc2l0eSAoRFNVKSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSByZXByb2R1Y2lyLCB0cmFkdWNpciAoY29tbyBzZSBkZWZpbmUgYSBjb250aW51YWNpw7NuKSB5L28gZGlzdHJpYnVpciBzdSBlbnbDrW8gKGluY2x1aWRvIGVsIHJlc3VtZW4pLiApIGVuIHRvZG8gZWwgbXVuZG8gZW4gZm9ybWF0byBpbXByZXNvIHkgZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG1lZGlvLCBpbmNsdWlkb3MsIGVudHJlIG90cm9zLCBhdWRpbyBvIHbDrWRlby4KClVzdGVkIGFjZXB0YSBxdWUgRFNVIHB1ZWRlLCBzaW4gY2FtYmlhciBlbCBjb250ZW5pZG8sIHRyYWR1Y2lyIGVsIGVudsOtbyBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gY29uIGVsIGZpbiBkZSBwcmVzZXJ2YXJsby4KClRhbWJpw6luIGFjZXB0YSBxdWUgRFNVIHB1ZWRlIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGVudsOtbyBwb3IgbW90aXZvcyBkZSBzZWd1cmlkYWQsIHJlc3BhbGRvIHkgcHJlc2VydmFjacOzbi4KClVzdGVkIGRlY2xhcmEgcXVlIGVsIGVudsOtbyBlcyBzdSB0cmFiYWpvIG9yaWdpbmFsIHkgcXVlIHRpZW5lIGRlcmVjaG8gYSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuIFRhbWJpw6luIGRlY2xhcmEgcXVlIHN1IGVudsOtbywgYSBzdSBsZWFsIHNhYmVyIHkgZW50ZW5kZXIsIG5vIGluZnJpbmdlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBuYWRpZS4KClNpIGVsIGVudsOtbyBjb250aWVuZSBtYXRlcmlhbCBzb2JyZSBlbCBjdWFsIHVzdGVkIG5vIHBvc2VlIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIGlsaW1pdGFkbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgb3RvcmdhciBhIERTVSBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgeSBxdWUgZGljaG8gbWF0ZXJpYWwgcHJvcGllZGFkIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBkZW50cm8gZGUgZWwgdGV4dG8gbyBjb250ZW5pZG8gZGUgbGEgcHJlc2VudGFjacOzbi4KClNJIEVMIEVOVsONTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBVIE9SR0FOSVpBQ0nDk04gRElTVElOVEEgREUgRFNVLCBVU1RFRCBERUNMQVJBIFFVRSBIQSBDVU1QTElETyBDVUFMUVVJRVIgREVSRUNITyBERSBSRVZJU0nDk04gVSBPVFJBUyBPQkxJR0FDSU9ORVMgUkVRVUVSSURBUyBQT1IgRElDSE8gQ09OVFJBVE8gTyBBQ1VFUkRPLgoKRFNVIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdShzKSBub21icmUocykgY29tbyBhdXRvcihlcykgbyBwcm9waWV0YXJpbyhzKSBkZWwgZW52w61vIHkgbm8gcmVhbGl6YXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGVuIHN1IGVudsOtbywgc2Fsdm8gbGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW5jaWEuCg== |
| score |
13.905282 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).