Using biometric analysis to estimate body weight in Creole goats

Descripción del Articulo

Background: Creole goat husbandry for milk and meat improves food security in rural areas in Perú. Body weight (BW) is a key trait for selecting breeding stock, and it is estimated to be using algorithms. Likewise, BW is common in livestock farming. Aim: This study aimed to compare BW prediction mod...

Descripción completa

Detalles Bibliográficos
Autores: Trillo Zárate, Fritz Carlos, Paredes Chocce, Miguel Enrique, Salinas Marcos, Jorge, Temoche Socola, Víctor Alexander, Tafur Gutiérrez, Lucinda, Sessarego Dávila, Emmanuel Alexander, Acosta Granados, Irene Carol, Palomino Guerrera, Walter, Cruz Luis, Juancarlos Alejandro, Ruiz Chamorro, Jose Antonio
Formato: artículo
Fecha de Publicación:2025
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.inia.gob.pe:20.500.12955/2910
Enlace del recurso:http://hdl.handle.net/20.500.12955/2910
https://doi.org/10.5455/OVJ.2025.v15.i9.55
Nivel de acceso:acceso abierto
Materia:Algorithms
Creole
Machine learning
Predictive models
Morphometrics goats
Algoritmos
Criollo
Aprendizaje automático
Modelos predictivos
Morfometría de cabras
https://purl.org/pe-repo/ocde/ford#4.03.01
Body weight; Peso corporal; Animal morphology; Morfología animal; Body measurements; Morfología animal
id INIA_5e6d1d6d478fa9e6cac2945f604dead2
oai_identifier_str oai:repositorio.inia.gob.pe:20.500.12955/2910
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.none.fl_str_mv Using biometric analysis to estimate body weight in Creole goats
title Using biometric analysis to estimate body weight in Creole goats
spellingShingle Using biometric analysis to estimate body weight in Creole goats
Trillo Zárate, Fritz Carlos
Algorithms
Creole
Machine learning
Predictive models
Morphometrics goats
Algoritmos
Criollo
Aprendizaje automático
Modelos predictivos
Morfometría de cabras
https://purl.org/pe-repo/ocde/ford#4.03.01
Body weight; Peso corporal; Animal morphology; Morfología animal; Body measurements; Morfología animal
title_short Using biometric analysis to estimate body weight in Creole goats
title_full Using biometric analysis to estimate body weight in Creole goats
title_fullStr Using biometric analysis to estimate body weight in Creole goats
title_full_unstemmed Using biometric analysis to estimate body weight in Creole goats
title_sort Using biometric analysis to estimate body weight in Creole goats
author Trillo Zárate, Fritz Carlos
author_facet Trillo Zárate, Fritz Carlos
Paredes Chocce, Miguel Enrique
Salinas Marcos, Jorge
Temoche Socola, Víctor Alexander
Tafur Gutiérrez, Lucinda
Sessarego Dávila, Emmanuel Alexander
Acosta Granados, Irene Carol
Palomino Guerrera, Walter
Cruz Luis, Juancarlos Alejandro
Ruiz Chamorro, Jose Antonio
author_role author
author2 Paredes Chocce, Miguel Enrique
Salinas Marcos, Jorge
Temoche Socola, Víctor Alexander
Tafur Gutiérrez, Lucinda
Sessarego Dávila, Emmanuel Alexander
Acosta Granados, Irene Carol
Palomino Guerrera, Walter
Cruz Luis, Juancarlos Alejandro
Ruiz Chamorro, Jose Antonio
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Trillo Zárate, Fritz Carlos
Paredes Chocce, Miguel Enrique
Salinas Marcos, Jorge
Temoche Socola, Víctor Alexander
Tafur Gutiérrez, Lucinda
Sessarego Dávila, Emmanuel Alexander
Acosta Granados, Irene Carol
Palomino Guerrera, Walter
Cruz Luis, Juancarlos Alejandro
Ruiz Chamorro, Jose Antonio
dc.subject.none.fl_str_mv Algorithms
Creole
Machine learning
Predictive models
Morphometrics goats
Algoritmos
Criollo
Aprendizaje automático
Modelos predictivos
Morfometría de cabras
topic Algorithms
Creole
Machine learning
Predictive models
Morphometrics goats
Algoritmos
Criollo
Aprendizaje automático
Modelos predictivos
Morfometría de cabras
https://purl.org/pe-repo/ocde/ford#4.03.01
Body weight; Peso corporal; Animal morphology; Morfología animal; Body measurements; Morfología animal
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.03.01
dc.subject.agrovoc.none.fl_str_mv Body weight; Peso corporal; Animal morphology; Morfología animal; Body measurements; Morfología animal
description Background: Creole goat husbandry for milk and meat improves food security in rural areas in Perú. Body weight (BW) is a key trait for selecting breeding stock, and it is estimated to be using algorithms. Likewise, BW is common in livestock farming. Aim: This study aimed to compare BW prediction models using a data mining algorithm in Creole goats, considering their biometric measurements. Methods: Data from 1,075 females aged between 1 and 4 years were used. Measurements of chest width, thoracic perimeter, wither height, sacrum height, rump width and length, body length, cannon bone perimeter, age, and region of the herd were recorded. The regression trees (classification and regression tree), support vector regression (SVR), and random forest regression (RFR) algorithms were used. Results: The SVR was better at predicting BWs in Creole goat herds. Similarly, the results were stable during training (R² = 0.765) and testing (R² = 0.707). However, it should be noted that RFR performed better with training data (R² = 0.942). Conclusion: The proposed predictive models have demonstrated significant potential for accurately predicting BW based on biometric data. Finally, it contributes to better selection, feeding, and sanitary management of Creole goats.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-10-20T16:13:17Z
dc.date.available.none.fl_str_mv 2025-10-20T16:13:17Z
dc.date.issued.fl_str_mv 2025-09-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv Trillo-Zárate, F., Paredes-Chocce, M. E., Salinas, J., Temoche-Socola, V. A., Tafur Gutiérrez, L., Sessarego, E. A., Acosta, I., Palomino-Guerrera, W., Cruz-Luis, J. A., & Ruiz-Chamorro, J. A. (2025). Using biometric analysis to estimate body weight in Creole goats. Open Veterinary Journal, 15(9), 4496-4504. https://doi.org/10.5455/OVJ.2025.v15.i9.55
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12955/2910
dc.identifier.doi.none.fl_str_mv https://doi.org/10.5455/OVJ.2025.v15.i9.55
identifier_str_mv Trillo-Zárate, F., Paredes-Chocce, M. E., Salinas, J., Temoche-Socola, V. A., Tafur Gutiérrez, L., Sessarego, E. A., Acosta, I., Palomino-Guerrera, W., Cruz-Luis, J. A., & Ruiz-Chamorro, J. A. (2025). Using biometric analysis to estimate body weight in Creole goats. Open Veterinary Journal, 15(9), 4496-4504. https://doi.org/10.5455/OVJ.2025.v15.i9.55
url http://hdl.handle.net/20.500.12955/2910
https://doi.org/10.5455/OVJ.2025.v15.i9.55
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2226-4485
dc.relation.ispartofseries.none.fl_str_mv Open Veterinary Journal
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/nc/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/nc/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Eldaghayes Publisher
dc.publisher.country.none.fl_str_mv LY
publisher.none.fl_str_mv Eldaghayes Publisher
dc.source.none.fl_str_mv Instituto Nacional de Innovación Agraria
reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.none.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/869d0f3a-0d37-48df-acf0-680ae4e70ab3/download
https://repositorio.inia.gob.pe/bitstreams/c2c71435-c660-4978-8a93-cef7c1f18fc4/download
bitstream.checksum.fl_str_mv a1dff3722e05e29dac20fa1a97a12ccf
1d91b4c46c6f61051b9921ad8b9515ec
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1846649321450110976
spelling Trillo Zárate, Fritz CarlosParedes Chocce, Miguel EnriqueSalinas Marcos, JorgeTemoche Socola, Víctor AlexanderTafur Gutiérrez, LucindaSessarego Dávila, Emmanuel AlexanderAcosta Granados, Irene CarolPalomino Guerrera, WalterCruz Luis, Juancarlos AlejandroRuiz Chamorro, Jose Antonio2025-10-20T16:13:17Z2025-10-20T16:13:17Z2025-09-30Trillo-Zárate, F., Paredes-Chocce, M. E., Salinas, J., Temoche-Socola, V. A., Tafur Gutiérrez, L., Sessarego, E. A., Acosta, I., Palomino-Guerrera, W., Cruz-Luis, J. A., & Ruiz-Chamorro, J. A. (2025). Using biometric analysis to estimate body weight in Creole goats. Open Veterinary Journal, 15(9), 4496-4504. https://doi.org/10.5455/OVJ.2025.v15.i9.55http://hdl.handle.net/20.500.12955/2910https://doi.org/10.5455/OVJ.2025.v15.i9.55Background: Creole goat husbandry for milk and meat improves food security in rural areas in Perú. Body weight (BW) is a key trait for selecting breeding stock, and it is estimated to be using algorithms. Likewise, BW is common in livestock farming. Aim: This study aimed to compare BW prediction models using a data mining algorithm in Creole goats, considering their biometric measurements. Methods: Data from 1,075 females aged between 1 and 4 years were used. Measurements of chest width, thoracic perimeter, wither height, sacrum height, rump width and length, body length, cannon bone perimeter, age, and region of the herd were recorded. The regression trees (classification and regression tree), support vector regression (SVR), and random forest regression (RFR) algorithms were used. Results: The SVR was better at predicting BWs in Creole goat herds. Similarly, the results were stable during training (R² = 0.765) and testing (R² = 0.707). However, it should be noted that RFR performed better with training data (R² = 0.942). Conclusion: The proposed predictive models have demonstrated significant potential for accurately predicting BW based on biometric data. Finally, it contributes to better selection, feeding, and sanitary management of Creole goats.This study received financial support from the project entitled "Improvement of Research and Technology Transfer" Services for the Sustainable Management of Goat Livestock in Dry Forests and the Central Coast across the following departments: Tumbes, Piura, Lambayeque, Amazonas, La Libertad, Ancash, Ayacucho, Ica, and Lima, with CUI 2506684, facilitated by the National Institute of Agrarian Innovation.application/pdfengEldaghayes PublisherLYurn:issn:2226-4485Open Veterinary Journalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/nc/4.0/Instituto Nacional de Innovación Agrariareponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIARepositorio Institucional - INIAAlgorithmsCreoleMachine learningPredictive modelsMorphometrics goatsAlgoritmosCriolloAprendizaje automáticoModelos predictivosMorfometría de cabrashttps://purl.org/pe-repo/ocde/ford#4.03.01Body weight; Peso corporal; Animal morphology; Morfología animal; Body measurements; Morfología animalUsing biometric analysis to estimate body weight in Creole goatsinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81792https://repositorio.inia.gob.pe/bitstreams/869d0f3a-0d37-48df-acf0-680ae4e70ab3/downloada1dff3722e05e29dac20fa1a97a12ccfMD51ORIGINALFritz_et-al_2025_biometric_creole_goats.pdfFritz_et-al_2025_biometric_creole_goats.pdfapplication/pdf430428https://repositorio.inia.gob.pe/bitstreams/c2c71435-c660-4978-8a93-cef7c1f18fc4/download1d91b4c46c6f61051b9921ad8b9515ecMD5120.500.12955/2910oai:repositorio.inia.gob.pe:20.500.12955/29102025-10-20 11:13:17.293https://creativecommons.org/licenses/by/nc/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9UQTogQ09MT1FVRSBTVSBQUk9QSUEgTElDRU5DSUEgQVFVw40KRXN0YSBsaWNlbmNpYSBkZSBtdWVzdHJhIHNlIHByb3BvcmNpb25hIMO6bmljYW1lbnRlIGNvbiBmaW5lcyBpbmZvcm1hdGl2b3MuCgpMSUNFTkNJQSBERSBESVNUUklCVUNJw5NOIE5PIEVYQ0xVU0lWQQpBbCBmaXJtYXIgeSBlbnZpYXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yIG8gcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBvdG9yZ2EgYSBEU3BhY2UgVW5pdmVyc2l0eSAoRFNVKSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSByZXByb2R1Y2lyLCB0cmFkdWNpciAoY29tbyBzZSBkZWZpbmUgYSBjb250aW51YWNpw7NuKSB5L28gZGlzdHJpYnVpciBzdSBlbnbDrW8gKGluY2x1aWRvIGVsIHJlc3VtZW4pLiApIGVuIHRvZG8gZWwgbXVuZG8gZW4gZm9ybWF0byBpbXByZXNvIHkgZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG1lZGlvLCBpbmNsdWlkb3MsIGVudHJlIG90cm9zLCBhdWRpbyBvIHbDrWRlby4KClVzdGVkIGFjZXB0YSBxdWUgRFNVIHB1ZWRlLCBzaW4gY2FtYmlhciBlbCBjb250ZW5pZG8sIHRyYWR1Y2lyIGVsIGVudsOtbyBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gY29uIGVsIGZpbiBkZSBwcmVzZXJ2YXJsby4KClRhbWJpw6luIGFjZXB0YSBxdWUgRFNVIHB1ZWRlIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGVudsOtbyBwb3IgbW90aXZvcyBkZSBzZWd1cmlkYWQsIHJlc3BhbGRvIHkgcHJlc2VydmFjacOzbi4KClVzdGVkIGRlY2xhcmEgcXVlIGVsIGVudsOtbyBlcyBzdSB0cmFiYWpvIG9yaWdpbmFsIHkgcXVlIHRpZW5lIGRlcmVjaG8gYSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuIFRhbWJpw6luIGRlY2xhcmEgcXVlIHN1IGVudsOtbywgYSBzdSBsZWFsIHNhYmVyIHkgZW50ZW5kZXIsIG5vIGluZnJpbmdlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBuYWRpZS4KClNpIGVsIGVudsOtbyBjb250aWVuZSBtYXRlcmlhbCBzb2JyZSBlbCBjdWFsIHVzdGVkIG5vIHBvc2VlIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIGlsaW1pdGFkbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgb3RvcmdhciBhIERTVSBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgeSBxdWUgZGljaG8gbWF0ZXJpYWwgcHJvcGllZGFkIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBkZW50cm8gZGUgZWwgdGV4dG8gbyBjb250ZW5pZG8gZGUgbGEgcHJlc2VudGFjacOzbi4KClNJIEVMIEVOVsONTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBVIE9SR0FOSVpBQ0nDk04gRElTVElOVEEgREUgRFNVLCBVU1RFRCBERUNMQVJBIFFVRSBIQSBDVU1QTElETyBDVUFMUVVJRVIgREVSRUNITyBERSBSRVZJU0nDk04gVSBPVFJBUyBPQkxJR0FDSU9ORVMgUkVRVUVSSURBUyBQT1IgRElDSE8gQ09OVFJBVE8gTyBBQ1VFUkRPLgoKRFNVIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdShzKSBub21icmUocykgY29tbyBhdXRvcihlcykgbyBwcm9waWV0YXJpbyhzKSBkZWwgZW52w61vIHkgbm8gcmVhbGl6YXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGVuIHN1IGVudsOtbywgc2Fsdm8gbGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW5jaWEuCg==
score 13.905282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).