Using biometric analysis to estimate body weight in Creole goats

Descripción del Articulo

Background: Creole goat husbandry for milk and meat improves food security in rural areas in Perú. Body weight (BW) is a key trait for selecting breeding stock, and it is estimated to be using algorithms. Likewise, BW is common in livestock farming. Aim: This study aimed to compare BW prediction mod...

Descripción completa

Detalles Bibliográficos
Autores: Trillo Zárate, Fritz Carlos, Paredes Chocce, Miguel Enrique, Salinas Marcos, Jorge, Temoche Socola, Víctor Alexander, Tafur Gutiérrez, Lucinda, Sessarego Dávila, Emmanuel Alexander, Acosta Granados, Irene Carol, Palomino Guerrera, Walter, Cruz Luis, Juancarlos Alejandro, Ruiz Chamorro, Jose Antonio
Formato: artículo
Fecha de Publicación:2025
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.inia.gob.pe:20.500.12955/2910
Enlace del recurso:http://hdl.handle.net/20.500.12955/2910
https://doi.org/10.5455/OVJ.2025.v15.i9.55
Nivel de acceso:acceso abierto
Materia:Algorithms
Creole
Machine learning
Predictive models
Morphometrics goats
Algoritmos
Criollo
Aprendizaje automático
Modelos predictivos
Morfometría de cabras
https://purl.org/pe-repo/ocde/ford#4.03.01
Body weight; Peso corporal; Animal morphology; Morfología animal; Body measurements; Morfología animal
Descripción
Sumario:Background: Creole goat husbandry for milk and meat improves food security in rural areas in Perú. Body weight (BW) is a key trait for selecting breeding stock, and it is estimated to be using algorithms. Likewise, BW is common in livestock farming. Aim: This study aimed to compare BW prediction models using a data mining algorithm in Creole goats, considering their biometric measurements. Methods: Data from 1,075 females aged between 1 and 4 years were used. Measurements of chest width, thoracic perimeter, wither height, sacrum height, rump width and length, body length, cannon bone perimeter, age, and region of the herd were recorded. The regression trees (classification and regression tree), support vector regression (SVR), and random forest regression (RFR) algorithms were used. Results: The SVR was better at predicting BWs in Creole goat herds. Similarly, the results were stable during training (R² = 0.765) and testing (R² = 0.707). However, it should be noted that RFR performed better with training data (R² = 0.942). Conclusion: The proposed predictive models have demonstrated significant potential for accurately predicting BW based on biometric data. Finally, it contributes to better selection, feeding, and sanitary management of Creole goats.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).