Ionospheric echo detection in digital ionograms using convolutional neural networks
Descripción del Articulo
An ionogram is a graph of the time that a vertically transmitted wave takes to return to the earth as a function of frequency. Time is typically represented as virtual height, which is the time divided by the speed of light. The ionogram is shaped by making a trace of this height against the frequen...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2021 |
| Institución: | Instituto Geofísico del Perú |
| Repositorio: | IGP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.igp.gob.pe:20.500.12816/5122 |
| Enlace del recurso: | http://hdl.handle.net/20.500.12816/5122 https://doi.org/10.1029/2020RS007258 |
| Nivel de acceso: | acceso abierto |
| Materia: | Ionograms Automatic scaling Ionosphere profiles Deep learning https://purl.org/pe-repo/ocde/ford#1.05.01 |
| id |
IGPR_6cf8396a09aeb8f54f6e2dda79ce5b50 |
|---|---|
| oai_identifier_str |
oai:repositorio.igp.gob.pe:20.500.12816/5122 |
| network_acronym_str |
IGPR |
| network_name_str |
IGP-Institucional |
| repository_id_str |
4701 |
| dc.title.none.fl_str_mv |
Ionospheric echo detection in digital ionograms using convolutional neural networks |
| title |
Ionospheric echo detection in digital ionograms using convolutional neural networks |
| spellingShingle |
Ionospheric echo detection in digital ionograms using convolutional neural networks De la Jara, César Ionograms Automatic scaling Ionosphere profiles Deep learning https://purl.org/pe-repo/ocde/ford#1.05.01 |
| title_short |
Ionospheric echo detection in digital ionograms using convolutional neural networks |
| title_full |
Ionospheric echo detection in digital ionograms using convolutional neural networks |
| title_fullStr |
Ionospheric echo detection in digital ionograms using convolutional neural networks |
| title_full_unstemmed |
Ionospheric echo detection in digital ionograms using convolutional neural networks |
| title_sort |
Ionospheric echo detection in digital ionograms using convolutional neural networks |
| author |
De la Jara, César |
| author_facet |
De la Jara, César Olivares, C. |
| author_role |
author |
| author2 |
Olivares, C. |
| author2_role |
author |
| dc.contributor.author.fl_str_mv |
De la Jara, César Olivares, C. |
| dc.subject.none.fl_str_mv |
Ionograms Automatic scaling Ionosphere profiles Deep learning |
| topic |
Ionograms Automatic scaling Ionosphere profiles Deep learning https://purl.org/pe-repo/ocde/ford#1.05.01 |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.05.01 |
| description |
An ionogram is a graph of the time that a vertically transmitted wave takes to return to the earth as a function of frequency. Time is typically represented as virtual height, which is the time divided by the speed of light. The ionogram is shaped by making a trace of this height against the frequency of the transmitted wave. Along with the echoes of the ionosphere, ionograms usually contain a large amount of noise and interference of different nature that must be removed in order to extract useful information. In the present work, we propose a method based on convolutional neural networks to extract ionospheric echoes from digital ionograms. Extraction using the CNN model is compared with extraction using machine learning techniques. From the extracted traces, ionospheric parameters can be determined and electron density profile can be derived. |
| publishDate |
2021 |
| dc.date.accessioned.none.fl_str_mv |
2022-02-25T10:52:39Z |
| dc.date.available.none.fl_str_mv |
2022-02-25T10:52:39Z |
| dc.date.issued.fl_str_mv |
2021-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.none.fl_str_mv |
De La Jara, C., & Olivares, C. (2021). Ionospheric echo detection in digital ionograms using convolutional neural networks.==$Radio Science, 56$==(8), e2020RS007258. https://doi.org/10.1029/2020RS007258 |
| dc.identifier.govdoc.none.fl_str_mv |
index-oti2018 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12816/5122 |
| dc.identifier.journal.none.fl_str_mv |
Radio Science |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1029/2020RS007258 |
| identifier_str_mv |
De La Jara, C., & Olivares, C. (2021). Ionospheric echo detection in digital ionograms using convolutional neural networks.==$Radio Science, 56$==(8), e2020RS007258. https://doi.org/10.1029/2020RS007258 index-oti2018 Radio Science |
| url |
http://hdl.handle.net/20.500.12816/5122 https://doi.org/10.1029/2020RS007258 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
urn:issn:0048-6604 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
American Geophysical Union |
| publisher.none.fl_str_mv |
American Geophysical Union |
| dc.source.none.fl_str_mv |
reponame:IGP-Institucional instname:Instituto Geofísico del Perú instacron:IGP |
| instname_str |
Instituto Geofísico del Perú |
| instacron_str |
IGP |
| institution |
IGP |
| reponame_str |
IGP-Institucional |
| collection |
IGP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.igp.gob.pe/bitstreams/8dc1e24c-2182-4a00-9141-3e8eadfaad28/download https://repositorio.igp.gob.pe/bitstreams/8a86fd2c-28c3-4a27-b729-d75d28945e84/download https://repositorio.igp.gob.pe/bitstreams/a7476fd2-2154-47f4-909f-3f16159a0704/download https://repositorio.igp.gob.pe/bitstreams/2477916f-4890-477f-8f41-e6c0cdd5012f/download |
| bitstream.checksum.fl_str_mv |
ae524b504d44abe7328f7e9403f837fb 8a4605be74aa9ea9d79846c1fba20a33 a15cdf93e91c628058baee34dc88db0c cdd4c2478f1f4e79b9e21ca2f9a227fc |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Geofísico Nacional |
| repository.mail.fl_str_mv |
biblio@igp.gob.pe |
| _version_ |
1842618489653690368 |
| spelling |
De la Jara, CésarOlivares, C.2022-02-25T10:52:39Z2022-02-25T10:52:39Z2021-08De La Jara, C., & Olivares, C. (2021). Ionospheric echo detection in digital ionograms using convolutional neural networks.==$Radio Science, 56$==(8), e2020RS007258. https://doi.org/10.1029/2020RS007258index-oti2018http://hdl.handle.net/20.500.12816/5122Radio Sciencehttps://doi.org/10.1029/2020RS007258An ionogram is a graph of the time that a vertically transmitted wave takes to return to the earth as a function of frequency. Time is typically represented as virtual height, which is the time divided by the speed of light. The ionogram is shaped by making a trace of this height against the frequency of the transmitted wave. Along with the echoes of the ionosphere, ionograms usually contain a large amount of noise and interference of different nature that must be removed in order to extract useful information. In the present work, we propose a method based on convolutional neural networks to extract ionospheric echoes from digital ionograms. Extraction using the CNN model is compared with extraction using machine learning techniques. From the extracted traces, ionospheric parameters can be determined and electron density profile can be derived.Por paresapplication/pdfengAmerican Geophysical Unionurn:issn:0048-6604info:eu-repo/semantics/openAccessIonogramsAutomatic scalingIonosphere profilesDeep learninghttps://purl.org/pe-repo/ocde/ford#1.05.01Ionospheric echo detection in digital ionograms using convolutional neural networksinfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPORIGINALDe_la_Jara_&_Olivares_2021_Radio-Science.pdfapplication/pdf2971872https://repositorio.igp.gob.pe/bitstreams/8dc1e24c-2182-4a00-9141-3e8eadfaad28/downloadae524b504d44abe7328f7e9403f837fbMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/8a86fd2c-28c3-4a27-b729-d75d28945e84/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTDe_la_Jara_&_Olivares_2021_Radio-Science.pdf.txtDe_la_Jara_&_Olivares_2021_Radio-Science.pdf.txtExtracted texttext/plain1117https://repositorio.igp.gob.pe/bitstreams/a7476fd2-2154-47f4-909f-3f16159a0704/downloada15cdf93e91c628058baee34dc88db0cMD53THUMBNAILDe_la_Jara_&_Olivares_2021_Radio-Science.pdf.jpgDe_la_Jara_&_Olivares_2021_Radio-Science.pdf.jpgIM Thumbnailimage/jpeg52171https://repositorio.igp.gob.pe/bitstreams/2477916f-4890-477f-8f41-e6c0cdd5012f/downloadcdd4c2478f1f4e79b9e21ca2f9a227fcMD5420.500.12816/5122oai:repositorio.igp.gob.pe:20.500.12816/51222025-08-19 10:25:28.829open.accesshttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.905282 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).