Ionospheric echo detection in digital ionograms using convolutional neural networks

Descripción del Articulo

An ionogram is a graph of the time that a vertically transmitted wave takes to return to the earth as a function of frequency. Time is typically represented as virtual height, which is the time divided by the speed of light. The ionogram is shaped by making a trace of this height against the frequen...

Descripción completa

Detalles Bibliográficos
Autores: De la Jara, César, Olivares, C.
Formato: artículo
Fecha de Publicación:2021
Institución:Instituto Geofísico del Perú
Repositorio:IGP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.igp.gob.pe:20.500.12816/5122
Enlace del recurso:http://hdl.handle.net/20.500.12816/5122
https://doi.org/10.1029/2020RS007258
Nivel de acceso:acceso abierto
Materia:Ionograms
Automatic scaling
Ionosphere profiles
Deep learning
https://purl.org/pe-repo/ocde/ford#1.05.01
id IGPR_6cf8396a09aeb8f54f6e2dda79ce5b50
oai_identifier_str oai:repositorio.igp.gob.pe:20.500.12816/5122
network_acronym_str IGPR
network_name_str IGP-Institucional
repository_id_str 4701
dc.title.none.fl_str_mv Ionospheric echo detection in digital ionograms using convolutional neural networks
title Ionospheric echo detection in digital ionograms using convolutional neural networks
spellingShingle Ionospheric echo detection in digital ionograms using convolutional neural networks
De la Jara, César
Ionograms
Automatic scaling
Ionosphere profiles
Deep learning
https://purl.org/pe-repo/ocde/ford#1.05.01
title_short Ionospheric echo detection in digital ionograms using convolutional neural networks
title_full Ionospheric echo detection in digital ionograms using convolutional neural networks
title_fullStr Ionospheric echo detection in digital ionograms using convolutional neural networks
title_full_unstemmed Ionospheric echo detection in digital ionograms using convolutional neural networks
title_sort Ionospheric echo detection in digital ionograms using convolutional neural networks
author De la Jara, César
author_facet De la Jara, César
Olivares, C.
author_role author
author2 Olivares, C.
author2_role author
dc.contributor.author.fl_str_mv De la Jara, César
Olivares, C.
dc.subject.none.fl_str_mv Ionograms
Automatic scaling
Ionosphere profiles
Deep learning
topic Ionograms
Automatic scaling
Ionosphere profiles
Deep learning
https://purl.org/pe-repo/ocde/ford#1.05.01
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.01
description An ionogram is a graph of the time that a vertically transmitted wave takes to return to the earth as a function of frequency. Time is typically represented as virtual height, which is the time divided by the speed of light. The ionogram is shaped by making a trace of this height against the frequency of the transmitted wave. Along with the echoes of the ionosphere, ionograms usually contain a large amount of noise and interference of different nature that must be removed in order to extract useful information. In the present work, we propose a method based on convolutional neural networks to extract ionospheric echoes from digital ionograms. Extraction using the CNN model is compared with extraction using machine learning techniques. From the extracted traces, ionospheric parameters can be determined and electron density profile can be derived.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2022-02-25T10:52:39Z
dc.date.available.none.fl_str_mv 2022-02-25T10:52:39Z
dc.date.issued.fl_str_mv 2021-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv De La Jara, C., & Olivares, C. (2021). Ionospheric echo detection in digital ionograms using convolutional neural networks.==$Radio Science, 56$==(8), e2020RS007258. https://doi.org/10.1029/2020RS007258
dc.identifier.govdoc.none.fl_str_mv index-oti2018
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12816/5122
dc.identifier.journal.none.fl_str_mv Radio Science
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1029/2020RS007258
identifier_str_mv De La Jara, C., & Olivares, C. (2021). Ionospheric echo detection in digital ionograms using convolutional neural networks.==$Radio Science, 56$==(8), e2020RS007258. https://doi.org/10.1029/2020RS007258
index-oti2018
Radio Science
url http://hdl.handle.net/20.500.12816/5122
https://doi.org/10.1029/2020RS007258
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:0048-6604
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Geophysical Union
publisher.none.fl_str_mv American Geophysical Union
dc.source.none.fl_str_mv reponame:IGP-Institucional
instname:Instituto Geofísico del Perú
instacron:IGP
instname_str Instituto Geofísico del Perú
instacron_str IGP
institution IGP
reponame_str IGP-Institucional
collection IGP-Institucional
bitstream.url.fl_str_mv https://repositorio.igp.gob.pe/bitstreams/8dc1e24c-2182-4a00-9141-3e8eadfaad28/download
https://repositorio.igp.gob.pe/bitstreams/8a86fd2c-28c3-4a27-b729-d75d28945e84/download
https://repositorio.igp.gob.pe/bitstreams/a7476fd2-2154-47f4-909f-3f16159a0704/download
https://repositorio.igp.gob.pe/bitstreams/2477916f-4890-477f-8f41-e6c0cdd5012f/download
bitstream.checksum.fl_str_mv ae524b504d44abe7328f7e9403f837fb
8a4605be74aa9ea9d79846c1fba20a33
a15cdf93e91c628058baee34dc88db0c
cdd4c2478f1f4e79b9e21ca2f9a227fc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Geofísico Nacional
repository.mail.fl_str_mv biblio@igp.gob.pe
_version_ 1842618489653690368
spelling De la Jara, CésarOlivares, C.2022-02-25T10:52:39Z2022-02-25T10:52:39Z2021-08De La Jara, C., & Olivares, C. (2021). Ionospheric echo detection in digital ionograms using convolutional neural networks.==$Radio Science, 56$==(8), e2020RS007258. https://doi.org/10.1029/2020RS007258index-oti2018http://hdl.handle.net/20.500.12816/5122Radio Sciencehttps://doi.org/10.1029/2020RS007258An ionogram is a graph of the time that a vertically transmitted wave takes to return to the earth as a function of frequency. Time is typically represented as virtual height, which is the time divided by the speed of light. The ionogram is shaped by making a trace of this height against the frequency of the transmitted wave. Along with the echoes of the ionosphere, ionograms usually contain a large amount of noise and interference of different nature that must be removed in order to extract useful information. In the present work, we propose a method based on convolutional neural networks to extract ionospheric echoes from digital ionograms. Extraction using the CNN model is compared with extraction using machine learning techniques. From the extracted traces, ionospheric parameters can be determined and electron density profile can be derived.Por paresapplication/pdfengAmerican Geophysical Unionurn:issn:0048-6604info:eu-repo/semantics/openAccessIonogramsAutomatic scalingIonosphere profilesDeep learninghttps://purl.org/pe-repo/ocde/ford#1.05.01Ionospheric echo detection in digital ionograms using convolutional neural networksinfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPORIGINALDe_la_Jara_&_Olivares_2021_Radio-Science.pdfapplication/pdf2971872https://repositorio.igp.gob.pe/bitstreams/8dc1e24c-2182-4a00-9141-3e8eadfaad28/downloadae524b504d44abe7328f7e9403f837fbMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/8a86fd2c-28c3-4a27-b729-d75d28945e84/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTDe_la_Jara_&_Olivares_2021_Radio-Science.pdf.txtDe_la_Jara_&_Olivares_2021_Radio-Science.pdf.txtExtracted texttext/plain1117https://repositorio.igp.gob.pe/bitstreams/a7476fd2-2154-47f4-909f-3f16159a0704/downloada15cdf93e91c628058baee34dc88db0cMD53THUMBNAILDe_la_Jara_&_Olivares_2021_Radio-Science.pdf.jpgDe_la_Jara_&_Olivares_2021_Radio-Science.pdf.jpgIM Thumbnailimage/jpeg52171https://repositorio.igp.gob.pe/bitstreams/2477916f-4890-477f-8f41-e6c0cdd5012f/downloadcdd4c2478f1f4e79b9e21ca2f9a227fcMD5420.500.12816/5122oai:repositorio.igp.gob.pe:20.500.12816/51222025-08-19 10:25:28.829open.accesshttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.905282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).