Ionospheric echoes detection in digital ionograms using convolutional neural networks

Descripción del Articulo

An ionogram is a graph that shows the distance that a vertically transmitted wave, of a given frequency, travels before returning to the earth. The ionogram is shaped by making a trace of this distance, which is called virtual height, against the frequency of the transmitted wave. Along with the ech...

Descripción completa

Detalles Bibliográficos
Autor: De la Jara Sánchez, César
Formato: tesis de maestría
Fecha de Publicación:2019
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/167490
Enlace del recurso:http://hdl.handle.net/20.500.12404/14984
Nivel de acceso:acceso abierto
Materia:Redes neuronales (Computación)
Ionosfera
Sistemas de transmisión de datos
https://purl.org/pe-repo/ocde/ford#1.02.00
Descripción
Sumario:An ionogram is a graph that shows the distance that a vertically transmitted wave, of a given frequency, travels before returning to the earth. The ionogram is shaped by making a trace of this distance, which is called virtual height, against the frequency of the transmitted wave. Along with the echoes of the ionosphere, ionograms usually contain a large amount of noise of different nature, that must be removed in order to extract useful information. In the present work, we propose to use a convolutional neural network model to improve the quality of the information obtained from digital ionograms, compared to that using image processing and machine learning techniques, in the generation of electronic density profiles. A data set of more than 900,000 ionograms from 5 ionospheric observation stations is available to use.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).