Ionospheric echoes detection in digital ionograms using convolutional neural networks

Descripción del Articulo

An ionogram is a graph that shows the distance that a vertically transmitted wave, of a given frequency, travels before returning to the earth. The ionogram is shaped by making a trace of this distance, which is called virtual height, against the frequency of the transmitted wave. Along with the ech...

Descripción completa

Detalles Bibliográficos
Autor: De la Jara Sánchez, César
Formato: tesis de maestría
Fecha de Publicación:2019
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/167490
Enlace del recurso:http://hdl.handle.net/20.500.12404/14984
Nivel de acceso:acceso abierto
Materia:Redes neuronales (Computación)
Ionosfera
Sistemas de transmisión de datos
https://purl.org/pe-repo/ocde/ford#1.02.00
id RPUC_1014adf9e1bbb36824fcac692ab2e4ab
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/167490
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Olivares Poggi, César AugustoDe la Jara Sánchez, César2019-09-13T02:59:14Z2019-09-13T02:59:14Z20192019-09-12http://hdl.handle.net/20.500.12404/14984An ionogram is a graph that shows the distance that a vertically transmitted wave, of a given frequency, travels before returning to the earth. The ionogram is shaped by making a trace of this distance, which is called virtual height, against the frequency of the transmitted wave. Along with the echoes of the ionosphere, ionograms usually contain a large amount of noise of different nature, that must be removed in order to extract useful information. In the present work, we propose to use a convolutional neural network model to improve the quality of the information obtained from digital ionograms, compared to that using image processing and machine learning techniques, in the generation of electronic density profiles. A data set of more than 900,000 ionograms from 5 ionospheric observation stations is available to use.Trabajo de investigaciónengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/Redes neuronales (Computación)IonosferaSistemas de transmisión de datoshttps://purl.org/pe-repo/ocde/ford#1.02.00Ionospheric echoes detection in digital ionograms using convolutional neural networksinfo:eu-repo/semantics/masterThesisreponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en Informática con mención en Ciencias de la ComputaciónMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoInformática con mención en Ciencias de la Computación09342040611087https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#trabajoDeInvestigacion20.500.14657/167490oai:repositorio.pucp.edu.pe:20.500.14657/1674902025-03-11 11:07:37.694http://creativecommons.org/licenses/by-nc-sa/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv Ionospheric echoes detection in digital ionograms using convolutional neural networks
title Ionospheric echoes detection in digital ionograms using convolutional neural networks
spellingShingle Ionospheric echoes detection in digital ionograms using convolutional neural networks
De la Jara Sánchez, César
Redes neuronales (Computación)
Ionosfera
Sistemas de transmisión de datos
https://purl.org/pe-repo/ocde/ford#1.02.00
title_short Ionospheric echoes detection in digital ionograms using convolutional neural networks
title_full Ionospheric echoes detection in digital ionograms using convolutional neural networks
title_fullStr Ionospheric echoes detection in digital ionograms using convolutional neural networks
title_full_unstemmed Ionospheric echoes detection in digital ionograms using convolutional neural networks
title_sort Ionospheric echoes detection in digital ionograms using convolutional neural networks
author De la Jara Sánchez, César
author_facet De la Jara Sánchez, César
author_role author
dc.contributor.advisor.fl_str_mv Olivares Poggi, César Augusto
dc.contributor.author.fl_str_mv De la Jara Sánchez, César
dc.subject.es_ES.fl_str_mv Redes neuronales (Computación)
Ionosfera
Sistemas de transmisión de datos
topic Redes neuronales (Computación)
Ionosfera
Sistemas de transmisión de datos
https://purl.org/pe-repo/ocde/ford#1.02.00
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.00
description An ionogram is a graph that shows the distance that a vertically transmitted wave, of a given frequency, travels before returning to the earth. The ionogram is shaped by making a trace of this distance, which is called virtual height, against the frequency of the transmitted wave. Along with the echoes of the ionosphere, ionograms usually contain a large amount of noise of different nature, that must be removed in order to extract useful information. In the present work, we propose to use a convolutional neural network model to improve the quality of the information obtained from digital ionograms, compared to that using image processing and machine learning techniques, in the generation of electronic density profiles. A data set of more than 900,000 ionograms from 5 ionospheric observation stations is available to use.
publishDate 2019
dc.date.accessioned.es_ES.fl_str_mv 2019-09-13T02:59:14Z
dc.date.available.es_ES.fl_str_mv 2019-09-13T02:59:14Z
dc.date.created.es_ES.fl_str_mv 2019
dc.date.issued.fl_str_mv 2019-09-12
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/14984
url http://hdl.handle.net/20.500.12404/14984
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835639096511299584
score 13.836542
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).