Ionospheric echoes detection in digital ionograms using convolutional neural networks
Descripción del Articulo
An ionogram is a graph that shows the distance that a vertically transmitted wave, of a given frequency, travels before returning to the earth. The ionogram is shaped by making a trace of this distance, which is called virtual height, against the frequency of the transmitted wave. Along with the ech...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2019 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/167490 |
Enlace del recurso: | http://hdl.handle.net/20.500.12404/14984 |
Nivel de acceso: | acceso abierto |
Materia: | Redes neuronales (Computación) Ionosfera Sistemas de transmisión de datos https://purl.org/pe-repo/ocde/ford#1.02.00 |
id |
RPUC_1014adf9e1bbb36824fcac692ab2e4ab |
---|---|
oai_identifier_str |
oai:repositorio.pucp.edu.pe:20.500.14657/167490 |
network_acronym_str |
RPUC |
network_name_str |
PUCP-Institucional |
repository_id_str |
2905 |
spelling |
Olivares Poggi, César AugustoDe la Jara Sánchez, César2019-09-13T02:59:14Z2019-09-13T02:59:14Z20192019-09-12http://hdl.handle.net/20.500.12404/14984An ionogram is a graph that shows the distance that a vertically transmitted wave, of a given frequency, travels before returning to the earth. The ionogram is shaped by making a trace of this distance, which is called virtual height, against the frequency of the transmitted wave. Along with the echoes of the ionosphere, ionograms usually contain a large amount of noise of different nature, that must be removed in order to extract useful information. In the present work, we propose to use a convolutional neural network model to improve the quality of the information obtained from digital ionograms, compared to that using image processing and machine learning techniques, in the generation of electronic density profiles. A data set of more than 900,000 ionograms from 5 ionospheric observation stations is available to use.Trabajo de investigaciónengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/Redes neuronales (Computación)IonosferaSistemas de transmisión de datoshttps://purl.org/pe-repo/ocde/ford#1.02.00Ionospheric echoes detection in digital ionograms using convolutional neural networksinfo:eu-repo/semantics/masterThesisreponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en Informática con mención en Ciencias de la ComputaciónMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoInformática con mención en Ciencias de la Computación09342040611087https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#trabajoDeInvestigacion20.500.14657/167490oai:repositorio.pucp.edu.pe:20.500.14657/1674902025-03-11 11:07:37.694http://creativecommons.org/licenses/by-nc-sa/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe |
dc.title.es_ES.fl_str_mv |
Ionospheric echoes detection in digital ionograms using convolutional neural networks |
title |
Ionospheric echoes detection in digital ionograms using convolutional neural networks |
spellingShingle |
Ionospheric echoes detection in digital ionograms using convolutional neural networks De la Jara Sánchez, César Redes neuronales (Computación) Ionosfera Sistemas de transmisión de datos https://purl.org/pe-repo/ocde/ford#1.02.00 |
title_short |
Ionospheric echoes detection in digital ionograms using convolutional neural networks |
title_full |
Ionospheric echoes detection in digital ionograms using convolutional neural networks |
title_fullStr |
Ionospheric echoes detection in digital ionograms using convolutional neural networks |
title_full_unstemmed |
Ionospheric echoes detection in digital ionograms using convolutional neural networks |
title_sort |
Ionospheric echoes detection in digital ionograms using convolutional neural networks |
author |
De la Jara Sánchez, César |
author_facet |
De la Jara Sánchez, César |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
Olivares Poggi, César Augusto |
dc.contributor.author.fl_str_mv |
De la Jara Sánchez, César |
dc.subject.es_ES.fl_str_mv |
Redes neuronales (Computación) Ionosfera Sistemas de transmisión de datos |
topic |
Redes neuronales (Computación) Ionosfera Sistemas de transmisión de datos https://purl.org/pe-repo/ocde/ford#1.02.00 |
dc.subject.ocde.es_ES.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.00 |
description |
An ionogram is a graph that shows the distance that a vertically transmitted wave, of a given frequency, travels before returning to the earth. The ionogram is shaped by making a trace of this distance, which is called virtual height, against the frequency of the transmitted wave. Along with the echoes of the ionosphere, ionograms usually contain a large amount of noise of different nature, that must be removed in order to extract useful information. In the present work, we propose to use a convolutional neural network model to improve the quality of the information obtained from digital ionograms, compared to that using image processing and machine learning techniques, in the generation of electronic density profiles. A data set of more than 900,000 ionograms from 5 ionospheric observation stations is available to use. |
publishDate |
2019 |
dc.date.accessioned.es_ES.fl_str_mv |
2019-09-13T02:59:14Z |
dc.date.available.es_ES.fl_str_mv |
2019-09-13T02:59:14Z |
dc.date.created.es_ES.fl_str_mv |
2019 |
dc.date.issued.fl_str_mv |
2019-09-12 |
dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12404/14984 |
url |
http://hdl.handle.net/20.500.12404/14984 |
dc.language.iso.es_ES.fl_str_mv |
eng |
language |
eng |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/pe/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/pe/ |
dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
dc.publisher.country.es_ES.fl_str_mv |
PE |
dc.source.none.fl_str_mv |
reponame:PUCP-Institucional instname:Pontificia Universidad Católica del Perú instacron:PUCP |
instname_str |
Pontificia Universidad Católica del Perú |
instacron_str |
PUCP |
institution |
PUCP |
reponame_str |
PUCP-Institucional |
collection |
PUCP-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional de la PUCP |
repository.mail.fl_str_mv |
repositorio@pucp.pe |
_version_ |
1835639096511299584 |
score |
13.836542 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).