Stock market index prediction using artificial neural network

Descripción del Articulo

In this study the ability of artificial neural network (ANN) in forecasting the daily NASDAQ stock exchange rate was investigated. Several feed forward ANNs that were trained by the back propagation algorithm have been assessed. The methodology used in this study considered the short-term historical...

Descripción completa

Detalles Bibliográficos
Autores: Moghaddam, Amin Hedayati, Moghaddam, Moein Hedayati, Esfandyari, Morteza
Formato: artículo
Fecha de Publicación:2016
Institución:Universidad ESAN
Repositorio:ESAN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.esan.edu.pe:20.500.12640/1982
Enlace del recurso:https://revistas.esan.edu.pe/index.php/jefas/article/view/142
https://hdl.handle.net/20.500.12640/1982
https://doi.org/10.1016/j.jefas.2016.07.002
Nivel de acceso:acceso abierto
Materia:NASDAQ
ANN
Prediction
Predicción
https://purl.org/pe-repo/ocde/ford#5.02.04
id ESAN_bdabdc7bbc39e91a2f7c1e5d11992866
oai_identifier_str oai:repositorio.esan.edu.pe:20.500.12640/1982
network_acronym_str ESAN
network_name_str ESAN-Institucional
repository_id_str 4835
spelling Moghaddam, Amin HedayatiMoghaddam, Moein HedayatiEsfandyari, Morteza2020-07-01T04:20:30Z2020-07-01T04:20:30Z2016-12-01https://revistas.esan.edu.pe/index.php/jefas/article/view/142Moghaddam, A. H., Moghaddam, M. H., & Esfandyari, M. (2016). Stock market index prediction using artificial neural network. Journal of Economics, Finance and Administrative Science, 21(41), 89-93. https://doi.org/10.1016/j.jefas.2016.07.002https://hdl.handle.net/20.500.12640/1982https://doi.org/10.1016/j.jefas.2016.07.002In this study the ability of artificial neural network (ANN) in forecasting the daily NASDAQ stock exchange rate was investigated. Several feed forward ANNs that were trained by the back propagation algorithm have been assessed. The methodology used in this study considered the short-term historical stock prices as well as the day of week as inputs. Daily stock exchange rates of NASDAQ from January 28 2015 to 18 June 2015 are used to develop a robust model. First 70 days (January 28 to March 7) are selected as training dataset and the last 29 days are used for testing the model prediction ability. Networks for NASDAQ index prediction for two type of input dataset (four prior days and nine prior days) were developed and validated.En este estudio se investigó la capacidad de previsión del índice bursátil diario NASDAQ por parte de la red neuronal artificial (RNA). Se evaluaron diversas RNA proalimentadas que fueron entrenadas mediante un algoritmo de retropropagación. La metodología utilizada en este estudio consideró como inputs los precios bursátiles históricos a corto plazo así como el día de la semana. Se utilizaron los índices bursátiles diarios de NASDAQ del 28 de enero al 18 de junio de 2015 para desarrollar un modelo robusto. Se seleccionaron los primeros 70 días (del 28 de enero al 7 de marzo) como conjuntos de datos de entrenamiento y los últimos 29 días para probar la capacidad del modelo de predicción. Se desarrollaron y validaron redes para la predicción del índice NASDAQ para dos tipos de conjuntos de datos de input (los cuatro y los nueve días previos).InglésengUniversidad ESAN. ESAN EdicionesPEurn:issn:2218-0648https://revistas.esan.edu.pe/index.php/jefas/article/view/142/112Attribution 4.0 Internationalinfo:eu-repo/semantics/openAccessNASDAQANNPredictionNASDAQANNPredicciónhttps://purl.org/pe-repo/ocde/ford#5.02.04Stock market index prediction using artificial neural networkinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículoreponame:ESAN-Institucionalinstname:Universidad ESANinstacron:ESANJournal of Economics, Finance and Administrative Science93418921Acceso abiertoTHUMBNAIL41.jpg41.jpgimage/jpeg45078https://repositorio.esan.edu.pe/bitstreams/a7d18474-1ac4-4420-a99f-61c739c42a5b/download77a7c423c1cf8f2caea64b2cf971004bMD51falseAnonymousREADJEFAS-41-2016-89-93.pdf.jpgJEFAS-41-2016-89-93.pdf.jpgGenerated Thumbnailimage/jpeg5844https://repositorio.esan.edu.pe/bitstreams/db072d93-404f-4474-ba1a-07565128955f/download4faad4d85e69286aa4f6b1f043ffe5b0MD54falseAnonymousREADORIGINALJEFAS-41-2016-89-93.pdfTexto completoapplication/pdf566523https://repositorio.esan.edu.pe/bitstreams/40fffa80-47f2-45b0-8315-fc9437a94365/download4a33296cd7fcff80cb1b827ffd11b587MD52trueAnonymousREADTEXTJEFAS-41-2016-89-93.pdf.txtJEFAS-41-2016-89-93.pdf.txtExtracted texttext/plain38251https://repositorio.esan.edu.pe/bitstreams/cfc50433-81d4-476d-b6e1-ba5ab104d7e4/download3efbbda2f8512c18195bffa60d718d2eMD53falseAnonymousREAD20.500.12640/1982oai:repositorio.esan.edu.pe:20.500.12640/19822025-04-21 16:20:21.23open.accesshttps://repositorio.esan.edu.peRepositorio Institucional ESANrepositorio@esan.edu.pe
dc.title.en_EN.fl_str_mv Stock market index prediction using artificial neural network
title Stock market index prediction using artificial neural network
spellingShingle Stock market index prediction using artificial neural network
Moghaddam, Amin Hedayati
NASDAQ
ANN
Prediction
NASDAQ
ANN
Predicción
https://purl.org/pe-repo/ocde/ford#5.02.04
title_short Stock market index prediction using artificial neural network
title_full Stock market index prediction using artificial neural network
title_fullStr Stock market index prediction using artificial neural network
title_full_unstemmed Stock market index prediction using artificial neural network
title_sort Stock market index prediction using artificial neural network
author Moghaddam, Amin Hedayati
author_facet Moghaddam, Amin Hedayati
Moghaddam, Moein Hedayati
Esfandyari, Morteza
author_role author
author2 Moghaddam, Moein Hedayati
Esfandyari, Morteza
author2_role author
author
dc.contributor.author.fl_str_mv Moghaddam, Amin Hedayati
Moghaddam, Moein Hedayati
Esfandyari, Morteza
dc.subject.en_EN.fl_str_mv NASDAQ
ANN
Prediction
topic NASDAQ
ANN
Prediction
NASDAQ
ANN
Predicción
https://purl.org/pe-repo/ocde/ford#5.02.04
dc.subject.es_ES.fl_str_mv NASDAQ
ANN
Predicción
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.02.04
description In this study the ability of artificial neural network (ANN) in forecasting the daily NASDAQ stock exchange rate was investigated. Several feed forward ANNs that were trained by the back propagation algorithm have been assessed. The methodology used in this study considered the short-term historical stock prices as well as the day of week as inputs. Daily stock exchange rates of NASDAQ from January 28 2015 to 18 June 2015 are used to develop a robust model. First 70 days (January 28 to March 7) are selected as training dataset and the last 29 days are used for testing the model prediction ability. Networks for NASDAQ index prediction for two type of input dataset (four prior days and nine prior days) were developed and validated.
publishDate 2016
dc.date.accessioned.none.fl_str_mv 2020-07-01T04:20:30Z
dc.date.available.none.fl_str_mv 2020-07-01T04:20:30Z
dc.date.issued.fl_str_mv 2016-12-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.other.none.fl_str_mv Artículo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.esan.edu.pe/index.php/jefas/article/view/142
dc.identifier.citation.none.fl_str_mv Moghaddam, A. H., Moghaddam, M. H., & Esfandyari, M. (2016). Stock market index prediction using artificial neural network. Journal of Economics, Finance and Administrative Science, 21(41), 89-93. https://doi.org/10.1016/j.jefas.2016.07.002
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12640/1982
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.jefas.2016.07.002
url https://revistas.esan.edu.pe/index.php/jefas/article/view/142
https://hdl.handle.net/20.500.12640/1982
https://doi.org/10.1016/j.jefas.2016.07.002
identifier_str_mv Moghaddam, A. H., Moghaddam, M. H., & Esfandyari, M. (2016). Stock market index prediction using artificial neural network. Journal of Economics, Finance and Administrative Science, 21(41), 89-93. https://doi.org/10.1016/j.jefas.2016.07.002
dc.language.none.fl_str_mv Inglés
dc.language.iso.none.fl_str_mv eng
language_invalid_str_mv Inglés
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2218-0648
dc.relation.uri.none.fl_str_mv https://revistas.esan.edu.pe/index.php/jefas/article/view/142/112
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 4.0 International
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidad ESAN. ESAN Ediciones
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad ESAN. ESAN Ediciones
dc.source.none.fl_str_mv reponame:ESAN-Institucional
instname:Universidad ESAN
instacron:ESAN
instname_str Universidad ESAN
instacron_str ESAN
institution ESAN
reponame_str ESAN-Institucional
collection ESAN-Institucional
bitstream.url.fl_str_mv https://repositorio.esan.edu.pe/bitstreams/a7d18474-1ac4-4420-a99f-61c739c42a5b/download
https://repositorio.esan.edu.pe/bitstreams/db072d93-404f-4474-ba1a-07565128955f/download
https://repositorio.esan.edu.pe/bitstreams/40fffa80-47f2-45b0-8315-fc9437a94365/download
https://repositorio.esan.edu.pe/bitstreams/cfc50433-81d4-476d-b6e1-ba5ab104d7e4/download
bitstream.checksum.fl_str_mv 77a7c423c1cf8f2caea64b2cf971004b
4faad4d85e69286aa4f6b1f043ffe5b0
4a33296cd7fcff80cb1b827ffd11b587
3efbbda2f8512c18195bffa60d718d2e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional ESAN
repository.mail.fl_str_mv repositorio@esan.edu.pe
_version_ 1835651560378466304
score 13.959468
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).