Stock market index prediction using artificial neural network
Descripción del Articulo
In this study the ability of artificial neural network (ANN) in forecasting the daily NASDAQ stock exchange rate was investigated. Several feed forward ANNs that were trained by the back propagation algorithm have been assessed. The methodology used in this study considered the short-term historical...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2016 |
Institución: | Universidad ESAN |
Repositorio: | ESAN-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.esan.edu.pe:20.500.12640/1982 |
Enlace del recurso: | https://revistas.esan.edu.pe/index.php/jefas/article/view/142 https://hdl.handle.net/20.500.12640/1982 https://doi.org/10.1016/j.jefas.2016.07.002 |
Nivel de acceso: | acceso abierto |
Materia: | NASDAQ ANN Prediction Predicción https://purl.org/pe-repo/ocde/ford#5.02.04 |
id |
ESAN_bdabdc7bbc39e91a2f7c1e5d11992866 |
---|---|
oai_identifier_str |
oai:repositorio.esan.edu.pe:20.500.12640/1982 |
network_acronym_str |
ESAN |
network_name_str |
ESAN-Institucional |
repository_id_str |
4835 |
spelling |
Moghaddam, Amin HedayatiMoghaddam, Moein HedayatiEsfandyari, Morteza2020-07-01T04:20:30Z2020-07-01T04:20:30Z2016-12-01https://revistas.esan.edu.pe/index.php/jefas/article/view/142Moghaddam, A. H., Moghaddam, M. H., & Esfandyari, M. (2016). Stock market index prediction using artificial neural network. Journal of Economics, Finance and Administrative Science, 21(41), 89-93. https://doi.org/10.1016/j.jefas.2016.07.002https://hdl.handle.net/20.500.12640/1982https://doi.org/10.1016/j.jefas.2016.07.002In this study the ability of artificial neural network (ANN) in forecasting the daily NASDAQ stock exchange rate was investigated. Several feed forward ANNs that were trained by the back propagation algorithm have been assessed. The methodology used in this study considered the short-term historical stock prices as well as the day of week as inputs. Daily stock exchange rates of NASDAQ from January 28 2015 to 18 June 2015 are used to develop a robust model. First 70 days (January 28 to March 7) are selected as training dataset and the last 29 days are used for testing the model prediction ability. Networks for NASDAQ index prediction for two type of input dataset (four prior days and nine prior days) were developed and validated.En este estudio se investigó la capacidad de previsión del índice bursátil diario NASDAQ por parte de la red neuronal artificial (RNA). Se evaluaron diversas RNA proalimentadas que fueron entrenadas mediante un algoritmo de retropropagación. La metodología utilizada en este estudio consideró como inputs los precios bursátiles históricos a corto plazo así como el día de la semana. Se utilizaron los índices bursátiles diarios de NASDAQ del 28 de enero al 18 de junio de 2015 para desarrollar un modelo robusto. Se seleccionaron los primeros 70 días (del 28 de enero al 7 de marzo) como conjuntos de datos de entrenamiento y los últimos 29 días para probar la capacidad del modelo de predicción. Se desarrollaron y validaron redes para la predicción del índice NASDAQ para dos tipos de conjuntos de datos de input (los cuatro y los nueve días previos).InglésengUniversidad ESAN. ESAN EdicionesPEurn:issn:2218-0648https://revistas.esan.edu.pe/index.php/jefas/article/view/142/112Attribution 4.0 Internationalinfo:eu-repo/semantics/openAccessNASDAQANNPredictionNASDAQANNPredicciónhttps://purl.org/pe-repo/ocde/ford#5.02.04Stock market index prediction using artificial neural networkinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículoreponame:ESAN-Institucionalinstname:Universidad ESANinstacron:ESANJournal of Economics, Finance and Administrative Science93418921Acceso abiertoTHUMBNAIL41.jpg41.jpgimage/jpeg45078https://repositorio.esan.edu.pe/bitstreams/a7d18474-1ac4-4420-a99f-61c739c42a5b/download77a7c423c1cf8f2caea64b2cf971004bMD51falseAnonymousREADJEFAS-41-2016-89-93.pdf.jpgJEFAS-41-2016-89-93.pdf.jpgGenerated Thumbnailimage/jpeg5844https://repositorio.esan.edu.pe/bitstreams/db072d93-404f-4474-ba1a-07565128955f/download4faad4d85e69286aa4f6b1f043ffe5b0MD54falseAnonymousREADORIGINALJEFAS-41-2016-89-93.pdfTexto completoapplication/pdf566523https://repositorio.esan.edu.pe/bitstreams/40fffa80-47f2-45b0-8315-fc9437a94365/download4a33296cd7fcff80cb1b827ffd11b587MD52trueAnonymousREADTEXTJEFAS-41-2016-89-93.pdf.txtJEFAS-41-2016-89-93.pdf.txtExtracted texttext/plain38251https://repositorio.esan.edu.pe/bitstreams/cfc50433-81d4-476d-b6e1-ba5ab104d7e4/download3efbbda2f8512c18195bffa60d718d2eMD53falseAnonymousREAD20.500.12640/1982oai:repositorio.esan.edu.pe:20.500.12640/19822025-04-21 16:20:21.23open.accesshttps://repositorio.esan.edu.peRepositorio Institucional ESANrepositorio@esan.edu.pe |
dc.title.en_EN.fl_str_mv |
Stock market index prediction using artificial neural network |
title |
Stock market index prediction using artificial neural network |
spellingShingle |
Stock market index prediction using artificial neural network Moghaddam, Amin Hedayati NASDAQ ANN Prediction NASDAQ ANN Predicción https://purl.org/pe-repo/ocde/ford#5.02.04 |
title_short |
Stock market index prediction using artificial neural network |
title_full |
Stock market index prediction using artificial neural network |
title_fullStr |
Stock market index prediction using artificial neural network |
title_full_unstemmed |
Stock market index prediction using artificial neural network |
title_sort |
Stock market index prediction using artificial neural network |
author |
Moghaddam, Amin Hedayati |
author_facet |
Moghaddam, Amin Hedayati Moghaddam, Moein Hedayati Esfandyari, Morteza |
author_role |
author |
author2 |
Moghaddam, Moein Hedayati Esfandyari, Morteza |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Moghaddam, Amin Hedayati Moghaddam, Moein Hedayati Esfandyari, Morteza |
dc.subject.en_EN.fl_str_mv |
NASDAQ ANN Prediction |
topic |
NASDAQ ANN Prediction NASDAQ ANN Predicción https://purl.org/pe-repo/ocde/ford#5.02.04 |
dc.subject.es_ES.fl_str_mv |
NASDAQ ANN Predicción |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#5.02.04 |
description |
In this study the ability of artificial neural network (ANN) in forecasting the daily NASDAQ stock exchange rate was investigated. Several feed forward ANNs that were trained by the back propagation algorithm have been assessed. The methodology used in this study considered the short-term historical stock prices as well as the day of week as inputs. Daily stock exchange rates of NASDAQ from January 28 2015 to 18 June 2015 are used to develop a robust model. First 70 days (January 28 to March 7) are selected as training dataset and the last 29 days are used for testing the model prediction ability. Networks for NASDAQ index prediction for two type of input dataset (four prior days and nine prior days) were developed and validated. |
publishDate |
2016 |
dc.date.accessioned.none.fl_str_mv |
2020-07-01T04:20:30Z |
dc.date.available.none.fl_str_mv |
2020-07-01T04:20:30Z |
dc.date.issued.fl_str_mv |
2016-12-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.other.none.fl_str_mv |
Artículo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.esan.edu.pe/index.php/jefas/article/view/142 |
dc.identifier.citation.none.fl_str_mv |
Moghaddam, A. H., Moghaddam, M. H., & Esfandyari, M. (2016). Stock market index prediction using artificial neural network. Journal of Economics, Finance and Administrative Science, 21(41), 89-93. https://doi.org/10.1016/j.jefas.2016.07.002 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12640/1982 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.jefas.2016.07.002 |
url |
https://revistas.esan.edu.pe/index.php/jefas/article/view/142 https://hdl.handle.net/20.500.12640/1982 https://doi.org/10.1016/j.jefas.2016.07.002 |
identifier_str_mv |
Moghaddam, A. H., Moghaddam, M. H., & Esfandyari, M. (2016). Stock market index prediction using artificial neural network. Journal of Economics, Finance and Administrative Science, 21(41), 89-93. https://doi.org/10.1016/j.jefas.2016.07.002 |
dc.language.none.fl_str_mv |
Inglés |
dc.language.iso.none.fl_str_mv |
eng |
language_invalid_str_mv |
Inglés |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:2218-0648 |
dc.relation.uri.none.fl_str_mv |
https://revistas.esan.edu.pe/index.php/jefas/article/view/142/112 |
dc.rights.en.fl_str_mv |
Attribution 4.0 International |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 4.0 International |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidad ESAN. ESAN Ediciones |
dc.publisher.country.none.fl_str_mv |
PE |
publisher.none.fl_str_mv |
Universidad ESAN. ESAN Ediciones |
dc.source.none.fl_str_mv |
reponame:ESAN-Institucional instname:Universidad ESAN instacron:ESAN |
instname_str |
Universidad ESAN |
instacron_str |
ESAN |
institution |
ESAN |
reponame_str |
ESAN-Institucional |
collection |
ESAN-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.esan.edu.pe/bitstreams/a7d18474-1ac4-4420-a99f-61c739c42a5b/download https://repositorio.esan.edu.pe/bitstreams/db072d93-404f-4474-ba1a-07565128955f/download https://repositorio.esan.edu.pe/bitstreams/40fffa80-47f2-45b0-8315-fc9437a94365/download https://repositorio.esan.edu.pe/bitstreams/cfc50433-81d4-476d-b6e1-ba5ab104d7e4/download |
bitstream.checksum.fl_str_mv |
77a7c423c1cf8f2caea64b2cf971004b 4faad4d85e69286aa4f6b1f043ffe5b0 4a33296cd7fcff80cb1b827ffd11b587 3efbbda2f8512c18195bffa60d718d2e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional ESAN |
repository.mail.fl_str_mv |
repositorio@esan.edu.pe |
_version_ |
1835651560378466304 |
score |
13.959468 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).