A prediction model based on data mining to forecast the expectations of passing from a college student

Descripción del Articulo

The present work has as objective to apply data mining techniques to develop a predictive model to forecast the chance of passing that will have a college student at the time of enrolling in a particular subject. Given that the academic record of the student can be known, and based on that informati...

Descripción completa

Detalles Bibliográficos
Autores: Acosta de La Cruz, Pedro R., Flores Salinas, José A., Meza Pinto, Miguel A., Tineo Córdova, Freddy C.
Formato: artículo
Fecha de Publicación:2016
Institución:Universidad ESAN
Repositorio:ESAN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.esan.edu.pe:20.500.12640/3399
Enlace del recurso:https://hdl.handle.net/20.500.12640/3399
https://doi.org/10.17577/IJERTV5IS100394
Nivel de acceso:acceso abierto
Materia:Artificial neural networks
Data mining
Higher education
Predictive techniques
Redes neuronales artificiales
Minería de datos
Educación superior
Técnicas predictivas
https://purl.org/pe-repo/ocde/ford#2.00.00
id ESAN_b58ce2e27e87b434969920254e6cf28c
oai_identifier_str oai:repositorio.esan.edu.pe:20.500.12640/3399
network_acronym_str ESAN
network_name_str ESAN-Institucional
repository_id_str 4835
spelling Acosta de La Cruz, Pedro R.Flores Salinas, José A.Meza Pinto, Miguel A.Tineo Córdova, Freddy C.2023-05-19T14:04:09Z2023-05-19T14:04:09Z2016-10-26Acosta de La Cruz, P. R., Flores Salinas, J. A., Meza Pinto, M. A., & Tineo Córdova, F. C. (2016). A prediction model based on data mining to forecast the expectations of passing from a college student. International Journal of Engineering Research & Technology, 5(10), 530-533. https://doi.org/10.17577/IJERTV5IS100394https://hdl.handle.net/20.500.12640/3399https://doi.org/10.17577/IJERTV5IS100394The present work has as objective to apply data mining techniques to develop a predictive model to forecast the chance of passing that will have a college student at the time of enrolling in a particular subject. Given that the academic record of the student can be known, and based on that information, we propose an Artificial Neural Network (ANN) that allows, using various configurations, to predict and assess our goal. The model has been applied to a compulsory subject of higher education of a University and given the results obtained. This model can be applied to any other subject analogous with satisfactory results.application/pdfInglésengESRSA Publications Pvt. Ltd.INurn:issn:2278-018https://www.ijert.org/research/a-prediction-model-based-on-data-mining-to-forecast-the-expectations-of-passing-from-a-college-student-IJERTV5IS100394.pdfinfo:eu-repo/semantics/openAccessAttribution 4.0 Internationalhttps://creativecommons.org/licenses/by/4.0/Artificial neural networksData miningHigher educationPredictive techniquesRedes neuronales artificialesMinería de datosEducación superiorTécnicas predictivashttps://purl.org/pe-repo/ocde/ford#2.00.00A prediction model based on data mining to forecast the expectations of passing from a college studentinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículoreponame:ESAN-Institucionalinstname:Universidad ESANinstacron:ESANhttps://orcid.org/0000-0002-6771-3887orcid:mezahttps://orcid.org/0000-0002-0227-5564Acceso abiertoInternational Journal of Engineering Research & Technology533105305ORIGINALflores_meza_tineo_2016.pdfflores_meza_tineo_2016.pdfTexto completoapplication/pdf598863https://repositorio.esan.edu.pe/bitstreams/90f39f58-0a38-490c-bae1-5369b63605c9/downloadd2eace42090524b90e3884a0f913e8e2MD51trueAnonymousREADTHUMBNAILflores_meza_tineo_2016.pdf.jpgflores_meza_tineo_2016.pdf.jpgGenerated Thumbnailimage/jpeg6539https://repositorio.esan.edu.pe/bitstreams/88d10da4-9953-4dca-b0be-e9dc0612cac5/download7eb0e7309d86d8a60f6602e749fa6234MD55falseAnonymousREADTEXTflores_meza_tineo_2016.pdf.txtflores_meza_tineo_2016.pdf.txtExtracted texttext/plain16878https://repositorio.esan.edu.pe/bitstreams/dc9fcb83-5ddc-4987-b262-898d42f4d8e2/downloadb15dc4cc962523e8d9f686f2a3bdcb36MD54falseAnonymousREAD20.500.12640/3399oai:repositorio.esan.edu.pe:20.500.12640/33992024-11-25 19:41:17.873https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.esan.edu.peRepositorio Institucional ESANrepositorio@esan.edu.pe
dc.title.en_EN.fl_str_mv A prediction model based on data mining to forecast the expectations of passing from a college student
title A prediction model based on data mining to forecast the expectations of passing from a college student
spellingShingle A prediction model based on data mining to forecast the expectations of passing from a college student
Acosta de La Cruz, Pedro R.
Artificial neural networks
Data mining
Higher education
Predictive techniques
Redes neuronales artificiales
Minería de datos
Educación superior
Técnicas predictivas
https://purl.org/pe-repo/ocde/ford#2.00.00
title_short A prediction model based on data mining to forecast the expectations of passing from a college student
title_full A prediction model based on data mining to forecast the expectations of passing from a college student
title_fullStr A prediction model based on data mining to forecast the expectations of passing from a college student
title_full_unstemmed A prediction model based on data mining to forecast the expectations of passing from a college student
title_sort A prediction model based on data mining to forecast the expectations of passing from a college student
author Acosta de La Cruz, Pedro R.
author_facet Acosta de La Cruz, Pedro R.
Flores Salinas, José A.
Meza Pinto, Miguel A.
Tineo Córdova, Freddy C.
author_role author
author2 Flores Salinas, José A.
Meza Pinto, Miguel A.
Tineo Córdova, Freddy C.
author2_role author
author
author
dc.contributor.author.fl_str_mv Acosta de La Cruz, Pedro R.
Flores Salinas, José A.
Meza Pinto, Miguel A.
Tineo Córdova, Freddy C.
dc.subject.en_EN.fl_str_mv Artificial neural networks
Data mining
Higher education
Predictive techniques
topic Artificial neural networks
Data mining
Higher education
Predictive techniques
Redes neuronales artificiales
Minería de datos
Educación superior
Técnicas predictivas
https://purl.org/pe-repo/ocde/ford#2.00.00
dc.subject.es_ES.fl_str_mv Redes neuronales artificiales
Minería de datos
Educación superior
Técnicas predictivas
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.00.00
description The present work has as objective to apply data mining techniques to develop a predictive model to forecast the chance of passing that will have a college student at the time of enrolling in a particular subject. Given that the academic record of the student can be known, and based on that information, we propose an Artificial Neural Network (ANN) that allows, using various configurations, to predict and assess our goal. The model has been applied to a compulsory subject of higher education of a University and given the results obtained. This model can be applied to any other subject analogous with satisfactory results.
publishDate 2016
dc.date.accessioned.none.fl_str_mv 2023-05-19T14:04:09Z
dc.date.available.none.fl_str_mv 2023-05-19T14:04:09Z
dc.date.issued.fl_str_mv 2016-10-26
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.other.none.fl_str_mv Artículo
format article
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Acosta de La Cruz, P. R., Flores Salinas, J. A., Meza Pinto, M. A., & Tineo Córdova, F. C. (2016). A prediction model based on data mining to forecast the expectations of passing from a college student. International Journal of Engineering Research & Technology, 5(10), 530-533. https://doi.org/10.17577/IJERTV5IS100394
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12640/3399
dc.identifier.doi.none.fl_str_mv https://doi.org/10.17577/IJERTV5IS100394
identifier_str_mv Acosta de La Cruz, P. R., Flores Salinas, J. A., Meza Pinto, M. A., & Tineo Córdova, F. C. (2016). A prediction model based on data mining to forecast the expectations of passing from a college student. International Journal of Engineering Research & Technology, 5(10), 530-533. https://doi.org/10.17577/IJERTV5IS100394
url https://hdl.handle.net/20.500.12640/3399
https://doi.org/10.17577/IJERTV5IS100394
dc.language.none.fl_str_mv Inglés
dc.language.iso.none.fl_str_mv eng
language_invalid_str_mv Inglés
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2278-018
dc.relation.uri.none.fl_str_mv https://www.ijert.org/research/a-prediction-model-based-on-data-mining-to-forecast-the-expectations-of-passing-from-a-college-student-IJERTV5IS100394.pdf
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv ESRSA Publications Pvt. Ltd.
dc.publisher.country.none.fl_str_mv IN
publisher.none.fl_str_mv ESRSA Publications Pvt. Ltd.
dc.source.none.fl_str_mv reponame:ESAN-Institucional
instname:Universidad ESAN
instacron:ESAN
instname_str Universidad ESAN
instacron_str ESAN
institution ESAN
reponame_str ESAN-Institucional
collection ESAN-Institucional
bitstream.url.fl_str_mv https://repositorio.esan.edu.pe/bitstreams/90f39f58-0a38-490c-bae1-5369b63605c9/download
https://repositorio.esan.edu.pe/bitstreams/88d10da4-9953-4dca-b0be-e9dc0612cac5/download
https://repositorio.esan.edu.pe/bitstreams/dc9fcb83-5ddc-4987-b262-898d42f4d8e2/download
bitstream.checksum.fl_str_mv d2eace42090524b90e3884a0f913e8e2
7eb0e7309d86d8a60f6602e749fa6234
b15dc4cc962523e8d9f686f2a3bdcb36
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional ESAN
repository.mail.fl_str_mv repositorio@esan.edu.pe
_version_ 1843261683653410816
score 13.7211075
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).