A prediction model based on data mining to forecast the expectations of passing from a college student
Descripción del Articulo
The present work has as objective to apply data mining techniques to develop a predictive model to forecast the chance of passing that will have a college student at the time of enrolling in a particular subject. Given that the academic record of the student can be known, and based on that informati...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2016 |
Institución: | Universidad ESAN |
Repositorio: | ESAN-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.esan.edu.pe:20.500.12640/3399 |
Enlace del recurso: | https://hdl.handle.net/20.500.12640/3399 https://doi.org/10.17577/IJERTV5IS100394 |
Nivel de acceso: | acceso abierto |
Materia: | Artificial neural networks Data mining Higher education Predictive techniques Redes neuronales artificiales Minería de datos Educación superior Técnicas predictivas https://purl.org/pe-repo/ocde/ford#2.00.00 |
id |
ESAN_b58ce2e27e87b434969920254e6cf28c |
---|---|
oai_identifier_str |
oai:repositorio.esan.edu.pe:20.500.12640/3399 |
network_acronym_str |
ESAN |
network_name_str |
ESAN-Institucional |
repository_id_str |
4835 |
spelling |
Acosta de La Cruz, Pedro R.Flores Salinas, José A.Meza Pinto, Miguel A.Tineo Córdova, Freddy C.2023-05-19T14:04:09Z2023-05-19T14:04:09Z2016-10-26Acosta de La Cruz, P. R., Flores Salinas, J. A., Meza Pinto, M. A., & Tineo Córdova, F. C. (2016). A prediction model based on data mining to forecast the expectations of passing from a college student. International Journal of Engineering Research & Technology, 5(10), 530-533. https://doi.org/10.17577/IJERTV5IS100394https://hdl.handle.net/20.500.12640/3399https://doi.org/10.17577/IJERTV5IS100394The present work has as objective to apply data mining techniques to develop a predictive model to forecast the chance of passing that will have a college student at the time of enrolling in a particular subject. Given that the academic record of the student can be known, and based on that information, we propose an Artificial Neural Network (ANN) that allows, using various configurations, to predict and assess our goal. The model has been applied to a compulsory subject of higher education of a University and given the results obtained. This model can be applied to any other subject analogous with satisfactory results.application/pdfInglésengESRSA Publications Pvt. Ltd.INurn:issn:2278-018https://www.ijert.org/research/a-prediction-model-based-on-data-mining-to-forecast-the-expectations-of-passing-from-a-college-student-IJERTV5IS100394.pdfinfo:eu-repo/semantics/openAccessAttribution 4.0 Internationalhttps://creativecommons.org/licenses/by/4.0/Artificial neural networksData miningHigher educationPredictive techniquesRedes neuronales artificialesMinería de datosEducación superiorTécnicas predictivashttps://purl.org/pe-repo/ocde/ford#2.00.00A prediction model based on data mining to forecast the expectations of passing from a college studentinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículoreponame:ESAN-Institucionalinstname:Universidad ESANinstacron:ESANhttps://orcid.org/0000-0002-6771-3887orcid:mezahttps://orcid.org/0000-0002-0227-5564Acceso abiertoInternational Journal of Engineering Research & Technology533105305ORIGINALflores_meza_tineo_2016.pdfflores_meza_tineo_2016.pdfTexto completoapplication/pdf598863https://repositorio.esan.edu.pe/bitstreams/90f39f58-0a38-490c-bae1-5369b63605c9/downloadd2eace42090524b90e3884a0f913e8e2MD51trueAnonymousREADTHUMBNAILflores_meza_tineo_2016.pdf.jpgflores_meza_tineo_2016.pdf.jpgGenerated Thumbnailimage/jpeg6539https://repositorio.esan.edu.pe/bitstreams/88d10da4-9953-4dca-b0be-e9dc0612cac5/download7eb0e7309d86d8a60f6602e749fa6234MD55falseAnonymousREADTEXTflores_meza_tineo_2016.pdf.txtflores_meza_tineo_2016.pdf.txtExtracted texttext/plain16878https://repositorio.esan.edu.pe/bitstreams/dc9fcb83-5ddc-4987-b262-898d42f4d8e2/downloadb15dc4cc962523e8d9f686f2a3bdcb36MD54falseAnonymousREAD20.500.12640/3399oai:repositorio.esan.edu.pe:20.500.12640/33992024-11-25 19:41:17.873https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.esan.edu.peRepositorio Institucional ESANrepositorio@esan.edu.pe |
dc.title.en_EN.fl_str_mv |
A prediction model based on data mining to forecast the expectations of passing from a college student |
title |
A prediction model based on data mining to forecast the expectations of passing from a college student |
spellingShingle |
A prediction model based on data mining to forecast the expectations of passing from a college student Acosta de La Cruz, Pedro R. Artificial neural networks Data mining Higher education Predictive techniques Redes neuronales artificiales Minería de datos Educación superior Técnicas predictivas https://purl.org/pe-repo/ocde/ford#2.00.00 |
title_short |
A prediction model based on data mining to forecast the expectations of passing from a college student |
title_full |
A prediction model based on data mining to forecast the expectations of passing from a college student |
title_fullStr |
A prediction model based on data mining to forecast the expectations of passing from a college student |
title_full_unstemmed |
A prediction model based on data mining to forecast the expectations of passing from a college student |
title_sort |
A prediction model based on data mining to forecast the expectations of passing from a college student |
author |
Acosta de La Cruz, Pedro R. |
author_facet |
Acosta de La Cruz, Pedro R. Flores Salinas, José A. Meza Pinto, Miguel A. Tineo Córdova, Freddy C. |
author_role |
author |
author2 |
Flores Salinas, José A. Meza Pinto, Miguel A. Tineo Córdova, Freddy C. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Acosta de La Cruz, Pedro R. Flores Salinas, José A. Meza Pinto, Miguel A. Tineo Córdova, Freddy C. |
dc.subject.en_EN.fl_str_mv |
Artificial neural networks Data mining Higher education Predictive techniques |
topic |
Artificial neural networks Data mining Higher education Predictive techniques Redes neuronales artificiales Minería de datos Educación superior Técnicas predictivas https://purl.org/pe-repo/ocde/ford#2.00.00 |
dc.subject.es_ES.fl_str_mv |
Redes neuronales artificiales Minería de datos Educación superior Técnicas predictivas |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.00.00 |
description |
The present work has as objective to apply data mining techniques to develop a predictive model to forecast the chance of passing that will have a college student at the time of enrolling in a particular subject. Given that the academic record of the student can be known, and based on that information, we propose an Artificial Neural Network (ANN) that allows, using various configurations, to predict and assess our goal. The model has been applied to a compulsory subject of higher education of a University and given the results obtained. This model can be applied to any other subject analogous with satisfactory results. |
publishDate |
2016 |
dc.date.accessioned.none.fl_str_mv |
2023-05-19T14:04:09Z |
dc.date.available.none.fl_str_mv |
2023-05-19T14:04:09Z |
dc.date.issued.fl_str_mv |
2016-10-26 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.other.none.fl_str_mv |
Artículo |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Acosta de La Cruz, P. R., Flores Salinas, J. A., Meza Pinto, M. A., & Tineo Córdova, F. C. (2016). A prediction model based on data mining to forecast the expectations of passing from a college student. International Journal of Engineering Research & Technology, 5(10), 530-533. https://doi.org/10.17577/IJERTV5IS100394 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12640/3399 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.17577/IJERTV5IS100394 |
identifier_str_mv |
Acosta de La Cruz, P. R., Flores Salinas, J. A., Meza Pinto, M. A., & Tineo Córdova, F. C. (2016). A prediction model based on data mining to forecast the expectations of passing from a college student. International Journal of Engineering Research & Technology, 5(10), 530-533. https://doi.org/10.17577/IJERTV5IS100394 |
url |
https://hdl.handle.net/20.500.12640/3399 https://doi.org/10.17577/IJERTV5IS100394 |
dc.language.none.fl_str_mv |
Inglés |
dc.language.iso.none.fl_str_mv |
eng |
language_invalid_str_mv |
Inglés |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:2278-018 |
dc.relation.uri.none.fl_str_mv |
https://www.ijert.org/research/a-prediction-model-based-on-data-mining-to-forecast-the-expectations-of-passing-from-a-college-student-IJERTV5IS100394.pdf |
dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.en.fl_str_mv |
Attribution 4.0 International |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
ESRSA Publications Pvt. Ltd. |
dc.publisher.country.none.fl_str_mv |
IN |
publisher.none.fl_str_mv |
ESRSA Publications Pvt. Ltd. |
dc.source.none.fl_str_mv |
reponame:ESAN-Institucional instname:Universidad ESAN instacron:ESAN |
instname_str |
Universidad ESAN |
instacron_str |
ESAN |
institution |
ESAN |
reponame_str |
ESAN-Institucional |
collection |
ESAN-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.esan.edu.pe/bitstreams/90f39f58-0a38-490c-bae1-5369b63605c9/download https://repositorio.esan.edu.pe/bitstreams/88d10da4-9953-4dca-b0be-e9dc0612cac5/download https://repositorio.esan.edu.pe/bitstreams/dc9fcb83-5ddc-4987-b262-898d42f4d8e2/download |
bitstream.checksum.fl_str_mv |
d2eace42090524b90e3884a0f913e8e2 7eb0e7309d86d8a60f6602e749fa6234 b15dc4cc962523e8d9f686f2a3bdcb36 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional ESAN |
repository.mail.fl_str_mv |
repositorio@esan.edu.pe |
_version_ |
1843261683653410816 |
score |
13.7211075 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).