A prediction model based on data mining to forecast the expectations of passing from a college student

Descripción del Articulo

The present work has as objective to apply data mining techniques to develop a predictive model to forecast the chance of passing that will have a college student at the time of enrolling in a particular subject. Given that the academic record of the student can be known, and based on that informati...

Descripción completa

Detalles Bibliográficos
Autores: Acosta de La Cruz, Pedro R., Flores Salinas, José A., Meza Pinto, Miguel A., Tineo Córdova, Freddy C.
Formato: artículo
Fecha de Publicación:2016
Institución:Universidad ESAN
Repositorio:ESAN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.esan.edu.pe:20.500.12640/3399
Enlace del recurso:https://hdl.handle.net/20.500.12640/3399
https://doi.org/10.17577/IJERTV5IS100394
Nivel de acceso:acceso abierto
Materia:Artificial neural networks
Data mining
Higher education
Predictive techniques
Redes neuronales artificiales
Minería de datos
Educación superior
Técnicas predictivas
https://purl.org/pe-repo/ocde/ford#2.00.00
Descripción
Sumario:The present work has as objective to apply data mining techniques to develop a predictive model to forecast the chance of passing that will have a college student at the time of enrolling in a particular subject. Given that the academic record of the student can be known, and based on that information, we propose an Artificial Neural Network (ANN) that allows, using various configurations, to predict and assess our goal. The model has been applied to a compulsory subject of higher education of a University and given the results obtained. This model can be applied to any other subject analogous with satisfactory results.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).