Application of Semantic Segmentation with Few Labels in the Detection of Water Bodies from Perusat-1 Satellite's Images

Descripción del Articulo

Remote sensing is widely used to monitor earth surfaces with the main objective of extracting information from it. Such is the case of water surface, which is one of the most affected extensions when flood events occur, and its monitoring helps in the analysis of detecting such affected areas, consi...

Descripción completa

Detalles Bibliográficos
Autores: Gonzalez J., Sankaran K., Ayma V., Beltran C.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2570
Enlace del recurso:https://hdl.handle.net/20.500.12390/2570
https://doi.org/10.1109/LAGIRS48042.2020.9165643
Nivel de acceso:acceso abierto
Materia:water bodies detection
PeruSAT-1
remote sensing
satellite images
Semantic segmentation
http://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:Remote sensing is widely used to monitor earth surfaces with the main objective of extracting information from it. Such is the case of water surface, which is one of the most affected extensions when flood events occur, and its monitoring helps in the analysis of detecting such affected areas, considering that adequately defining water surfaces is one of the biggest problems that Peruvian authorities are concerned with. In this regard, semiautomatic mapping methods improve this monitoring, but this process remains a time-consuming task and into the subjectivity of the experts.In this work, we present a new approach for segmenting water surfaces from satellite images based on the application of convolutional neural networks. First, we explore the application of a U-Net model and then a transfer knowledge-based model. Our results show that both approaches are comparable when trained using an 680-labelled satellite image dataset; however, as the number of training samples is reduced, the performance of the transfer knowledge-based model, which combines high and very high image resolution characteristics, is improved. © 2020 IEEE.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).