Real-Time Detection Method of Persistent Objects in Radar Imagery with Deep Learning

Descripción del Articulo

Persistent object detection in radar imagery becomes harder if the results are expected before the next image arrives to the digitizer card. This requires a clear commitment between the hit rate, the false contact rate and a time restriction in order to get real-Time results taking one full revoluti...

Descripción completa

Detalles Bibliográficos
Autores: Martinez R.G., Vera J.M., Arrese C.C.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2474
Enlace del recurso:https://hdl.handle.net/20.500.12390/2474
https://doi.org/10.1109/EIRCON51178.2020.9254021
Nivel de acceso:acceso abierto
Materia:Radar images
Faster R-CNN
Persistent objects
http://purl.org/pe-repo/ocde/ford#2.02.03
id CONC_fa4754c76cb4e0731efa5a1568b01625
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2474
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Real-Time Detection Method of Persistent Objects in Radar Imagery with Deep Learning
title Real-Time Detection Method of Persistent Objects in Radar Imagery with Deep Learning
spellingShingle Real-Time Detection Method of Persistent Objects in Radar Imagery with Deep Learning
Martinez R.G.
Radar images
Faster R-CNN
Persistent objects
http://purl.org/pe-repo/ocde/ford#2.02.03
title_short Real-Time Detection Method of Persistent Objects in Radar Imagery with Deep Learning
title_full Real-Time Detection Method of Persistent Objects in Radar Imagery with Deep Learning
title_fullStr Real-Time Detection Method of Persistent Objects in Radar Imagery with Deep Learning
title_full_unstemmed Real-Time Detection Method of Persistent Objects in Radar Imagery with Deep Learning
title_sort Real-Time Detection Method of Persistent Objects in Radar Imagery with Deep Learning
author Martinez R.G.
author_facet Martinez R.G.
Vera J.M.
Arrese C.C.
author_role author
author2 Vera J.M.
Arrese C.C.
author2_role author
author
dc.contributor.author.fl_str_mv Martinez R.G.
Vera J.M.
Arrese C.C.
dc.subject.none.fl_str_mv Radar images
topic Radar images
Faster R-CNN
Persistent objects
http://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.es_PE.fl_str_mv Faster R-CNN
Persistent objects
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.03
description Persistent object detection in radar imagery becomes harder if the results are expected before the next image arrives to the digitizer card. This requires a clear commitment between the hit rate, the false contact rate and a time restriction in order to get real-Time results taking one full revolution of the radar as the basic unit. The conventional algorithms use CFAR techniques and obtain acceptable results, but with a high false contact rate, especially in near-shore radar imagery, which contain ground clutter portions of the images. This work presents the first results of the analysis to the solutions to this problem by applying Deep Learning. This research proposes the use of convolutional neural networks Faster R-CNN on radar imagery. The developed methods are applied using a methodology. The purpose of this research is to provide methods and techniques to improve the detection of persistent objects, thus having a positive impact in the maritime control and surveillance operations. © 2020 IEEE.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2474
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/EIRCON51178.2020.9254021
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85097841266
url https://hdl.handle.net/20.500.12390/2474
https://doi.org/10.1109/EIRCON51178.2020.9254021
identifier_str_mv 2-s2.0-85097841266
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883052540461056
spelling Publicationrp06273600rp06274600rp06275600Martinez R.G.Vera J.M.Arrese C.C.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2474https://doi.org/10.1109/EIRCON51178.2020.92540212-s2.0-85097841266Persistent object detection in radar imagery becomes harder if the results are expected before the next image arrives to the digitizer card. This requires a clear commitment between the hit rate, the false contact rate and a time restriction in order to get real-Time results taking one full revolution of the radar as the basic unit. The conventional algorithms use CFAR techniques and obtain acceptable results, but with a high false contact rate, especially in near-shore radar imagery, which contain ground clutter portions of the images. This work presents the first results of the analysis to the solutions to this problem by applying Deep Learning. This research proposes the use of convolutional neural networks Faster R-CNN on radar imagery. The developed methods are applied using a methodology. The purpose of this research is to provide methods and techniques to improve the detection of persistent objects, thus having a positive impact in the maritime control and surveillance operations. © 2020 IEEE.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengInstitute of Electrical and Electronics Engineers Inc.Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020info:eu-repo/semantics/openAccessRadar imagesFaster R-CNN-1Persistent objects-1http://purl.org/pe-repo/ocde/ford#2.02.03-1Real-Time Detection Method of Persistent Objects in Radar Imagery with Deep Learninginfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2474oai:repositorio.concytec.gob.pe:20.500.12390/24742024-05-30 15:24:47.925http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="07a821b6-7130-4e0d-9240-e2bfa311d317"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Real-Time Detection Method of Persistent Objects in Radar Imagery with Deep Learning</Title> <PublishedIn> <Publication> <Title>Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1109/EIRCON51178.2020.9254021</DOI> <SCP-Number>2-s2.0-85097841266</SCP-Number> <Authors> <Author> <DisplayName>Martinez R.G.</DisplayName> <Person id="rp06273" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Vera J.M.</DisplayName> <Person id="rp06274" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Arrese C.C.</DisplayName> <Person id="rp06275" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Radar images</Keyword> <Keyword>Faster R-CNN</Keyword> <Keyword>Persistent objects</Keyword> <Abstract>Persistent object detection in radar imagery becomes harder if the results are expected before the next image arrives to the digitizer card. This requires a clear commitment between the hit rate, the false contact rate and a time restriction in order to get real-Time results taking one full revolution of the radar as the basic unit. The conventional algorithms use CFAR techniques and obtain acceptable results, but with a high false contact rate, especially in near-shore radar imagery, which contain ground clutter portions of the images. This work presents the first results of the analysis to the solutions to this problem by applying Deep Learning. This research proposes the use of convolutional neural networks Faster R-CNN on radar imagery. The developed methods are applied using a methodology. The purpose of this research is to provide methods and techniques to improve the detection of persistent objects, thus having a positive impact in the maritime control and surveillance operations. © 2020 IEEE.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.466479
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).