Real-Time Detection Method of Persistent Objects in Radar Imagery with Deep Learning
Descripción del Articulo
        Persistent object detection in radar imagery becomes harder if the results are expected before the next image arrives to the digitizer card. This requires a clear commitment between the hit rate, the false contact rate and a time restriction in order to get real-Time results taking one full revoluti...
              
            
    
                        | Autores: | , , | 
|---|---|
| Formato: | artículo | 
| Fecha de Publicación: | 2020 | 
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación | 
| Repositorio: | CONCYTEC-Institucional | 
| Lenguaje: | inglés | 
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2474 | 
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/2474 https://doi.org/10.1109/EIRCON51178.2020.9254021  | 
| Nivel de acceso: | acceso abierto | 
| Materia: | Radar images Faster R-CNN Persistent objects http://purl.org/pe-repo/ocde/ford#2.02.03  | 
| id | 
                  CONC_fa4754c76cb4e0731efa5a1568b01625 | 
    
|---|---|
| oai_identifier_str | 
                  oai:repositorio.concytec.gob.pe:20.500.12390/2474 | 
    
| network_acronym_str | 
                  CONC | 
    
| network_name_str | 
                  CONCYTEC-Institucional | 
    
| repository_id_str | 
                  4689 | 
    
| dc.title.none.fl_str_mv | 
                  Real-Time Detection Method of Persistent Objects in Radar Imagery with Deep Learning | 
    
| title | 
                  Real-Time Detection Method of Persistent Objects in Radar Imagery with Deep Learning | 
    
| spellingShingle | 
                  Real-Time Detection Method of Persistent Objects in Radar Imagery with Deep Learning Martinez R.G. Radar images Faster R-CNN Persistent objects http://purl.org/pe-repo/ocde/ford#2.02.03  | 
    
| title_short | 
                  Real-Time Detection Method of Persistent Objects in Radar Imagery with Deep Learning | 
    
| title_full | 
                  Real-Time Detection Method of Persistent Objects in Radar Imagery with Deep Learning | 
    
| title_fullStr | 
                  Real-Time Detection Method of Persistent Objects in Radar Imagery with Deep Learning | 
    
| title_full_unstemmed | 
                  Real-Time Detection Method of Persistent Objects in Radar Imagery with Deep Learning | 
    
| title_sort | 
                  Real-Time Detection Method of Persistent Objects in Radar Imagery with Deep Learning | 
    
| author | 
                  Martinez R.G. | 
    
| author_facet | 
                  Martinez R.G. Vera J.M. Arrese C.C.  | 
    
| author_role | 
                  author | 
    
| author2 | 
                  Vera J.M. Arrese C.C.  | 
    
| author2_role | 
                  author author  | 
    
| dc.contributor.author.fl_str_mv | 
                  Martinez R.G. Vera J.M. Arrese C.C.  | 
    
| dc.subject.none.fl_str_mv | 
                  Radar images | 
    
| topic | 
                  Radar images Faster R-CNN Persistent objects http://purl.org/pe-repo/ocde/ford#2.02.03  | 
    
| dc.subject.es_PE.fl_str_mv | 
                  Faster R-CNN Persistent objects  | 
    
| dc.subject.ocde.none.fl_str_mv | 
                  http://purl.org/pe-repo/ocde/ford#2.02.03 | 
    
| description | 
                  Persistent object detection in radar imagery becomes harder if the results are expected before the next image arrives to the digitizer card. This requires a clear commitment between the hit rate, the false contact rate and a time restriction in order to get real-Time results taking one full revolution of the radar as the basic unit. The conventional algorithms use CFAR techniques and obtain acceptable results, but with a high false contact rate, especially in near-shore radar imagery, which contain ground clutter portions of the images. This work presents the first results of the analysis to the solutions to this problem by applying Deep Learning. This research proposes the use of convolutional neural networks Faster R-CNN on radar imagery. The developed methods are applied using a methodology. The purpose of this research is to provide methods and techniques to improve the detection of persistent objects, thus having a positive impact in the maritime control and surveillance operations. © 2020 IEEE. | 
    
| publishDate | 
                  2020 | 
    
| dc.date.accessioned.none.fl_str_mv | 
                  2024-05-30T23:13:38Z | 
    
| dc.date.available.none.fl_str_mv | 
                  2024-05-30T23:13:38Z | 
    
| dc.date.issued.fl_str_mv | 
                  2020 | 
    
| dc.type.none.fl_str_mv | 
                  info:eu-repo/semantics/article | 
    
| format | 
                  article | 
    
| dc.identifier.uri.none.fl_str_mv | 
                  https://hdl.handle.net/20.500.12390/2474 | 
    
| dc.identifier.doi.none.fl_str_mv | 
                  https://doi.org/10.1109/EIRCON51178.2020.9254021 | 
    
| dc.identifier.scopus.none.fl_str_mv | 
                  2-s2.0-85097841266 | 
    
| url | 
                  https://hdl.handle.net/20.500.12390/2474 https://doi.org/10.1109/EIRCON51178.2020.9254021  | 
    
| identifier_str_mv | 
                  2-s2.0-85097841266 | 
    
| dc.language.iso.none.fl_str_mv | 
                  eng | 
    
| language | 
                  eng | 
    
| dc.relation.ispartof.none.fl_str_mv | 
                  Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020 | 
    
| dc.rights.none.fl_str_mv | 
                  info:eu-repo/semantics/openAccess | 
    
| eu_rights_str_mv | 
                  openAccess | 
    
| dc.publisher.none.fl_str_mv | 
                  Institute of Electrical and Electronics Engineers Inc. | 
    
| publisher.none.fl_str_mv | 
                  Institute of Electrical and Electronics Engineers Inc. | 
    
| dc.source.none.fl_str_mv | 
                  reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC  | 
    
| instname_str | 
                  Consejo Nacional de Ciencia Tecnología e Innovación | 
    
| instacron_str | 
                  CONCYTEC | 
    
| institution | 
                  CONCYTEC | 
    
| reponame_str | 
                  CONCYTEC-Institucional | 
    
| collection | 
                  CONCYTEC-Institucional | 
    
| repository.name.fl_str_mv | 
                  Repositorio Institucional CONCYTEC | 
    
| repository.mail.fl_str_mv | 
                  repositorio@concytec.gob.pe | 
    
| _version_ | 
                  1844883052540461056 | 
    
| spelling | 
                  Publicationrp06273600rp06274600rp06275600Martinez R.G.Vera J.M.Arrese C.C.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2474https://doi.org/10.1109/EIRCON51178.2020.92540212-s2.0-85097841266Persistent object detection in radar imagery becomes harder if the results are expected before the next image arrives to the digitizer card. This requires a clear commitment between the hit rate, the false contact rate and a time restriction in order to get real-Time results taking one full revolution of the radar as the basic unit. The conventional algorithms use CFAR techniques and obtain acceptable results, but with a high false contact rate, especially in near-shore radar imagery, which contain ground clutter portions of the images. This work presents the first results of the analysis to the solutions to this problem by applying Deep Learning. This research proposes the use of convolutional neural networks Faster R-CNN on radar imagery. The developed methods are applied using a methodology. The purpose of this research is to provide methods and techniques to improve the detection of persistent objects, thus having a positive impact in the maritime control and surveillance operations. © 2020 IEEE.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengInstitute of Electrical and Electronics Engineers Inc.Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020info:eu-repo/semantics/openAccessRadar imagesFaster R-CNN-1Persistent objects-1http://purl.org/pe-repo/ocde/ford#2.02.03-1Real-Time Detection Method of Persistent Objects in Radar Imagery with Deep Learninginfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2474oai:repositorio.concytec.gob.pe:20.500.12390/24742024-05-30 15:24:47.925http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="07a821b6-7130-4e0d-9240-e2bfa311d317"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Real-Time Detection Method of Persistent Objects in Radar Imagery with Deep Learning</Title> <PublishedIn> <Publication> <Title>Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1109/EIRCON51178.2020.9254021</DOI> <SCP-Number>2-s2.0-85097841266</SCP-Number> <Authors> <Author> <DisplayName>Martinez R.G.</DisplayName> <Person id="rp06273" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Vera J.M.</DisplayName> <Person id="rp06274" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Arrese C.C.</DisplayName> <Person id="rp06275" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Radar images</Keyword> <Keyword>Faster R-CNN</Keyword> <Keyword>Persistent objects</Keyword> <Abstract>Persistent object detection in radar imagery becomes harder if the results are expected before the next image arrives to the digitizer card. This requires a clear commitment between the hit rate, the false contact rate and a time restriction in order to get real-Time results taking one full revolution of the radar as the basic unit. The conventional algorithms use CFAR techniques and obtain acceptable results, but with a high false contact rate, especially in near-shore radar imagery, which contain ground clutter portions of the images. This work presents the first results of the analysis to the solutions to this problem by applying Deep Learning. This research proposes the use of convolutional neural networks Faster R-CNN on radar imagery. The developed methods are applied using a methodology. The purpose of this research is to provide methods and techniques to improve the detection of persistent objects, thus having a positive impact in the maritime control and surveillance operations. © 2020 IEEE.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 | 
    
| score | 
                  13.466479 | 
    
 Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
    La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).