Ambient lighting generation for flash images with guided conditional adversarial networks

Descripción del Articulo

To cope with the challenges that low light conditions produce in images, photographers tend to use the light provided by the camera flash to get better illumination. Nevertheless, harsh shadows and non-uniform illumination can arise from using a camera flash, especially in low light conditions. Prev...

Descripción completa

Detalles Bibliográficos
Autores: Chávez J., Mora R., Cayllahua-Cahuina E.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2647
Enlace del recurso:https://hdl.handle.net/20.500.12390/2647
Nivel de acceso:acceso abierto
Materia:Illumination
Ambient Images
Attention Map
Flash Images
Generative Adversarial Networks
https://purl.org/pe-repo/ocde/ford#6.05.01
id CONC_f7bde24ef0908c831feb547d8305a9d6
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2647
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Ambient lighting generation for flash images with guided conditional adversarial networks
title Ambient lighting generation for flash images with guided conditional adversarial networks
spellingShingle Ambient lighting generation for flash images with guided conditional adversarial networks
Chávez J.
Illumination
Ambient Images
Attention Map
Flash Images
Generative Adversarial Networks
https://purl.org/pe-repo/ocde/ford#6.05.01
title_short Ambient lighting generation for flash images with guided conditional adversarial networks
title_full Ambient lighting generation for flash images with guided conditional adversarial networks
title_fullStr Ambient lighting generation for flash images with guided conditional adversarial networks
title_full_unstemmed Ambient lighting generation for flash images with guided conditional adversarial networks
title_sort Ambient lighting generation for flash images with guided conditional adversarial networks
author Chávez J.
author_facet Chávez J.
Mora R.
Cayllahua-Cahuina E.
author_role author
author2 Mora R.
Cayllahua-Cahuina E.
author2_role author
author
dc.contributor.author.fl_str_mv Chávez J.
Mora R.
Cayllahua-Cahuina E.
dc.subject.none.fl_str_mv Illumination
topic Illumination
Ambient Images
Attention Map
Flash Images
Generative Adversarial Networks
https://purl.org/pe-repo/ocde/ford#6.05.01
dc.subject.es_PE.fl_str_mv Ambient Images
Attention Map
Flash Images
Generative Adversarial Networks
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#6.05.01
description To cope with the challenges that low light conditions produce in images, photographers tend to use the light provided by the camera flash to get better illumination. Nevertheless, harsh shadows and non-uniform illumination can arise from using a camera flash, especially in low light conditions. Previous studies have focused on normalizing the lighting on flash images; however, to the best of our knowledge, no prior studies have examined the sideways shadows removal, reconstruction of overexposed areas, and the generation of synthetic ambient shadows or natural tone of scene objects. To provide more natural illumination on flash images and ensure high-frequency details, we propose a generative adversarial network in a guided conditional mode. We show that this approach not only generates natural illumination but also attenuates harsh shadows, simultaneously generating synthetic ambient shadows. Our approach achieves promising results on a custom FAID dataset, outperforming our baseline studies. We also analyze the components of our proposal and how they affect the overall performance and discuss the opportunities for future work.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2647
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85083578185
url https://hdl.handle.net/20.500.12390/2647
identifier_str_mv 2-s2.0-85083578185
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv VISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv SciTePress
publisher.none.fl_str_mv SciTePress
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883058235277312
spelling Publicationrp06834600rp06835600rp00649600Chávez J.Mora R.Cayllahua-Cahuina E.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/26472-s2.0-85083578185To cope with the challenges that low light conditions produce in images, photographers tend to use the light provided by the camera flash to get better illumination. Nevertheless, harsh shadows and non-uniform illumination can arise from using a camera flash, especially in low light conditions. Previous studies have focused on normalizing the lighting on flash images; however, to the best of our knowledge, no prior studies have examined the sideways shadows removal, reconstruction of overexposed areas, and the generation of synthetic ambient shadows or natural tone of scene objects. To provide more natural illumination on flash images and ensure high-frequency details, we propose a generative adversarial network in a guided conditional mode. We show that this approach not only generates natural illumination but also attenuates harsh shadows, simultaneously generating synthetic ambient shadows. Our approach achieves promising results on a custom FAID dataset, outperforming our baseline studies. We also analyze the components of our proposal and how they affect the overall performance and discuss the opportunities for future work.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSciTePressVISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applicationsinfo:eu-repo/semantics/openAccessIlluminationAmbient Images-1Attention Map-1Flash Images-1Generative Adversarial Networks-1https://purl.org/pe-repo/ocde/ford#6.05.01-1Ambient lighting generation for flash images with guided conditional adversarial networksinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2647oai:repositorio.concytec.gob.pe:20.500.12390/26472024-05-30 15:42:26.748http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="182fbf94-6c37-4957-925e-bb9e4156ed6b"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Ambient lighting generation for flash images with guided conditional adversarial networks</Title> <PublishedIn> <Publication> <Title>VISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <SCP-Number>2-s2.0-85083578185</SCP-Number> <Authors> <Author> <DisplayName>Chávez J.</DisplayName> <Person id="rp06834" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Mora R.</DisplayName> <Person id="rp06835" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cayllahua-Cahuina E.</DisplayName> <Person id="rp00649" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>SciTePress</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Illumination</Keyword> <Keyword>Ambient Images</Keyword> <Keyword>Attention Map</Keyword> <Keyword>Flash Images</Keyword> <Keyword>Generative Adversarial Networks</Keyword> <Abstract>To cope with the challenges that low light conditions produce in images, photographers tend to use the light provided by the camera flash to get better illumination. Nevertheless, harsh shadows and non-uniform illumination can arise from using a camera flash, especially in low light conditions. Previous studies have focused on normalizing the lighting on flash images; however, to the best of our knowledge, no prior studies have examined the sideways shadows removal, reconstruction of overexposed areas, and the generation of synthetic ambient shadows or natural tone of scene objects. To provide more natural illumination on flash images and ensure high-frequency details, we propose a generative adversarial network in a guided conditional mode. We show that this approach not only generates natural illumination but also attenuates harsh shadows, simultaneously generating synthetic ambient shadows. Our approach achieves promising results on a custom FAID dataset, outperforming our baseline studies. We also analyze the components of our proposal and how they affect the overall performance and discuss the opportunities for future work.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.413352
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).