Flash image enhancement via ratio-log image translation to ambient images

Descripción del Articulo

To illuminate low-light scenarios in photography, photographers usually use the camera flash, this produces flash images. Nevertheless, this external light may produce non-uniform illumination and unnatural color of objects, especially in low-light conditions. On the other hand, in an ambient image,...

Descripción completa

Detalles Bibliográficos
Autor: Chavez Alvarez, Jose Armando
Formato: tesis de maestría
Fecha de Publicación:2021
Institución:Universidad Católica San Pablo
Repositorio:UCSP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ucsp.edu.pe:20.500.12590/16788
Enlace del recurso:https://hdl.handle.net/20.500.12590/16788
Nivel de acceso:acceso abierto
Materia:Image enhancement
Image-to-image translation
Ratio images
Fully convolutional networks
https://purl.org/pe-repo/ocde/ford#1.02.01
Descripción
Sumario:To illuminate low-light scenarios in photography, photographers usually use the camera flash, this produces flash images. Nevertheless, this external light may produce non-uniform illumination and unnatural color of objects, especially in low-light conditions. On the other hand, in an ambient image, an image captured with the available light in the ambient, the illumination is evenly distributed. We therefore consider ambient images as the enhanced version of flash images. Thus, with a fully convolutional network, and a flash image as input, we first estimate the ratio-log image. Then, our model produces the ambient image by using the estimated ratio-log image and ash image. Hence, high-quality information is recovered with the flash image. Our model generates suitable natural and uniform illumination on the FAID dataset with SSIM = 0:662, and PSNR = 15:77, and achieves better performance than state-of-the-art methods. We also analyze the components of our model and how they affect the overall performance. Finally, we introduce a metric to measure the similarity of naturalness of illumination between target and predicted images.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).