Uso de redes neuronales artificiales para optimizar la dosificación de coagulantes en la planta de tratamiento de agua potable, Huancayo

Descripción del Articulo

En la investigación se utilizaron las redes neuronales artificiales como herramienta para optimizar la cantidad de coagulante (Al2SO4) que se utiliza en el tratamiento del agua potable de la empresa SEDAM de la ciudad de Huancayo – Perú, donde la calidad del agua al ingreso a la planta de tratamient...

Descripción completa

Detalles Bibliográficos
Autor: Peña Rojas, Anieval Cirilo
Formato: tesis doctoral
Fecha de Publicación:2016
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/357
Enlace del recurso:https://hdl.handle.net/20.500.12390/357
Nivel de acceso:acceso abierto
Materia:Tratamiento del agua
Agua potable
https://purl.org/pe-repo/ocde/ford#1.05.11
id CONC_dd88580a0b5b4273c217aa80905bf1cb
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/357
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Uso de redes neuronales artificiales para optimizar la dosificación de coagulantes en la planta de tratamiento de agua potable, Huancayo
title Uso de redes neuronales artificiales para optimizar la dosificación de coagulantes en la planta de tratamiento de agua potable, Huancayo
spellingShingle Uso de redes neuronales artificiales para optimizar la dosificación de coagulantes en la planta de tratamiento de agua potable, Huancayo
Peña Rojas, Anieval Cirilo
Tratamiento del agua
Agua potable
https://purl.org/pe-repo/ocde/ford#1.05.11
title_short Uso de redes neuronales artificiales para optimizar la dosificación de coagulantes en la planta de tratamiento de agua potable, Huancayo
title_full Uso de redes neuronales artificiales para optimizar la dosificación de coagulantes en la planta de tratamiento de agua potable, Huancayo
title_fullStr Uso de redes neuronales artificiales para optimizar la dosificación de coagulantes en la planta de tratamiento de agua potable, Huancayo
title_full_unstemmed Uso de redes neuronales artificiales para optimizar la dosificación de coagulantes en la planta de tratamiento de agua potable, Huancayo
title_sort Uso de redes neuronales artificiales para optimizar la dosificación de coagulantes en la planta de tratamiento de agua potable, Huancayo
author Peña Rojas, Anieval Cirilo
author_facet Peña Rojas, Anieval Cirilo
author_role author
dc.contributor.author.fl_str_mv Peña Rojas, Anieval Cirilo
dc.subject.none.fl_str_mv Tratamiento del agua
topic Tratamiento del agua
Agua potable
https://purl.org/pe-repo/ocde/ford#1.05.11
dc.subject.es_PE.fl_str_mv Agua potable
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.11
description En la investigación se utilizaron las redes neuronales artificiales como herramienta para optimizar la cantidad de coagulante (Al2SO4) que se utiliza en el tratamiento del agua potable de la empresa SEDAM de la ciudad de Huancayo – Perú, donde la calidad del agua al ingreso a la planta de tratamiento tuvo variabilidad permanente de turbidez debido a las precipitaciones fluviales que se presentaron generalmente en los meses de octubre a marzo. Este fenómeno meteorológico alteró en corto tiempo las características físicas y químicas del agua dificultando su tratamiento. Se utilizó en el laboratorio el ensayo denominado Prueba de Jarras para determinar la dosis de coagulante a emplear durante un periodo de once meses, con muestreo aleatorio diario. Las variables consideradas para el estudio fueron la turbidez, el pH, la conductividad, el color y sólidos disueltos totales con una temperatura promedio de 10 ºC y un caudal promedio de 148 l/s. Los cálculos obtenidos fueron utilizados para entrenar y probar dosis óptimas de coagulante haciendo uso de redes neuronales artificiales con tres topologías específicas: Red de tres capas (entrada de cinco neuronas, oculta de cinco neuronas, salida una neurona), Red de cuatro capas (entrada de cinco neuronas, dos ocultas de seis y cinco neuronas, salida una neurona) y Red de cuatro capas con dos ocultas llamada también de regresión generalizada (una de entrada con cinco neuronas, dos capas ocultas, en la primera se adiciona una neurona por cada caso entrenado y en la segunda oculta dos neuronas receptoras para regresión y una capa de salida con una neurona). Se concluyó que la topología más adecuada fue la última con una asertividad de 96.9 por ciento frente a los datos reales y en su entrenamiento se obtuvo una correlación de 98.4 por ciento evidenciando además que los factores más influentes al modelo son: color, turbidez y pH. La red seleccionada finalmente permitió predecir la dosificación de coagulante óptimo con una probabilidad de error máximo de 1.6 por ciento y en tiempo real con nuevos valores de entrada en el agua a tratar sin necesidad de recurrir a la Prueba de Jarras el cual sólo se realiza posteriormente para enriquecer su aprendizaje.
publishDate 2016
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2016
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/357
url https://hdl.handle.net/20.500.12390/357
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.publisher.none.fl_str_mv Universidad Nacional Agraria La Molina
publisher.none.fl_str_mv Universidad Nacional Agraria La Molina
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
bitstream.url.fl_str_mv https://repositorio.concytec.gob.pe/bitstreams/ee7659c7-a8b2-8f33-97d1-c77030ace382/download
https://repositorio.concytec.gob.pe/bitstreams/552891c7-efa6-3bbc-e6af-5172bc52d4a0/download
https://repositorio.concytec.gob.pe/bitstreams/02dcb959-ba78-63ba-2c15-8d9e030b1e96/download
https://repositorio.concytec.gob.pe/bitstreams/79026477-94fc-4272-8217-ec755be1cffd/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
eb5d693dcc89ad072dc70e21a04dd18d
c0f7fdff428293304c57d97ad5d4c5ac
0bd72d39676ffab991538e2ffaa5b058
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844331703569481728
spelling Publicationrp00319600Peña Rojas, Anieval Cirilo2024-05-30T23:13:38Z2024-05-30T23:13:38Z2016https://hdl.handle.net/20.500.12390/357En la investigación se utilizaron las redes neuronales artificiales como herramienta para optimizar la cantidad de coagulante (Al2SO4) que se utiliza en el tratamiento del agua potable de la empresa SEDAM de la ciudad de Huancayo – Perú, donde la calidad del agua al ingreso a la planta de tratamiento tuvo variabilidad permanente de turbidez debido a las precipitaciones fluviales que se presentaron generalmente en los meses de octubre a marzo. Este fenómeno meteorológico alteró en corto tiempo las características físicas y químicas del agua dificultando su tratamiento. Se utilizó en el laboratorio el ensayo denominado Prueba de Jarras para determinar la dosis de coagulante a emplear durante un periodo de once meses, con muestreo aleatorio diario. Las variables consideradas para el estudio fueron la turbidez, el pH, la conductividad, el color y sólidos disueltos totales con una temperatura promedio de 10 ºC y un caudal promedio de 148 l/s. Los cálculos obtenidos fueron utilizados para entrenar y probar dosis óptimas de coagulante haciendo uso de redes neuronales artificiales con tres topologías específicas: Red de tres capas (entrada de cinco neuronas, oculta de cinco neuronas, salida una neurona), Red de cuatro capas (entrada de cinco neuronas, dos ocultas de seis y cinco neuronas, salida una neurona) y Red de cuatro capas con dos ocultas llamada también de regresión generalizada (una de entrada con cinco neuronas, dos capas ocultas, en la primera se adiciona una neurona por cada caso entrenado y en la segunda oculta dos neuronas receptoras para regresión y una capa de salida con una neurona). Se concluyó que la topología más adecuada fue la última con una asertividad de 96.9 por ciento frente a los datos reales y en su entrenamiento se obtuvo una correlación de 98.4 por ciento evidenciando además que los factores más influentes al modelo son: color, turbidez y pH. La red seleccionada finalmente permitió predecir la dosificación de coagulante óptimo con una probabilidad de error máximo de 1.6 por ciento y en tiempo real con nuevos valores de entrada en el agua a tratar sin necesidad de recurrir a la Prueba de Jarras el cual sólo se realiza posteriormente para enriquecer su aprendizaje.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytspaUniversidad Nacional Agraria La Molinainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Tratamiento del aguaAgua potable-1https://purl.org/pe-repo/ocde/ford#1.05.11-1Uso de redes neuronales artificiales para optimizar la dosificación de coagulantes en la planta de tratamiento de agua potable, Huancayoinfo:eu-repo/semantics/doctoralThesisreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE#Doctor en Ingeniería y Ciencias AmbientalesIngeniería AmbientalUniversidad Nacional Agraria La Molina. Escuela de PosgradoLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.concytec.gob.pe/bitstreams/ee7659c7-a8b2-8f33-97d1-c77030ace382/download8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINAL2016_Peña_Uso-redes-neuronales.pdf2016_Peña_Uso-redes-neuronales.pdfapplication/pdf3252446https://repositorio.concytec.gob.pe/bitstreams/552891c7-efa6-3bbc-e6af-5172bc52d4a0/downloadeb5d693dcc89ad072dc70e21a04dd18dMD53THUMBNAIL2016_Peña_Uso-redes-neuronales.pdf.jpg2016_Peña_Uso-redes-neuronales.pdf.jpgIM Thumbnailimage/jpeg8705https://repositorio.concytec.gob.pe/bitstreams/02dcb959-ba78-63ba-2c15-8d9e030b1e96/downloadc0f7fdff428293304c57d97ad5d4c5acMD54TEXT2016_Peña_Uso-redes-neuronales.pdf.txt2016_Peña_Uso-redes-neuronales.pdf.txtExtracted texttext/plain204790https://repositorio.concytec.gob.pe/bitstreams/79026477-94fc-4272-8217-ec755be1cffd/download0bd72d39676ffab991538e2ffaa5b058MD5520.500.12390/357oai:repositorio.concytec.gob.pe:20.500.12390/3572024-06-10 15:17:29.401http://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessopen accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="569981a1-b56d-4383-aa46-3d9122ad4166"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>spa</Language> <Title>Uso de redes neuronales artificiales para optimizar la dosificación de coagulantes en la planta de tratamiento de agua potable, Huancayo</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2016</PublicationDate> <Authors> <Author> <DisplayName>Peña Rojas, Anieval Cirilo</DisplayName> <Person id="rp00319" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Universidad Nacional Agraria La Molina</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>http://creativecommons.org/licenses/by-nc/4.0/</License> <Keyword>Tratamiento del agua</Keyword> <Keyword>Agua potable</Keyword> <Abstract>En la investigación se utilizaron las redes neuronales artificiales como herramienta para optimizar la cantidad de coagulante (Al2SO4) que se utiliza en el tratamiento del agua potable de la empresa SEDAM de la ciudad de Huancayo – Perú, donde la calidad del agua al ingreso a la planta de tratamiento tuvo variabilidad permanente de turbidez debido a las precipitaciones fluviales que se presentaron generalmente en los meses de octubre a marzo. Este fenómeno meteorológico alteró en corto tiempo las características físicas y químicas del agua dificultando su tratamiento. Se utilizó en el laboratorio el ensayo denominado Prueba de Jarras para determinar la dosis de coagulante a emplear durante un periodo de once meses, con muestreo aleatorio diario. Las variables consideradas para el estudio fueron la turbidez, el pH, la conductividad, el color y sólidos disueltos totales con una temperatura promedio de 10 ºC y un caudal promedio de 148 l/s. Los cálculos obtenidos fueron utilizados para entrenar y probar dosis óptimas de coagulante haciendo uso de redes neuronales artificiales con tres topologías específicas: Red de tres capas (entrada de cinco neuronas, oculta de cinco neuronas, salida una neurona), Red de cuatro capas (entrada de cinco neuronas, dos ocultas de seis y cinco neuronas, salida una neurona) y Red de cuatro capas con dos ocultas llamada también de regresión generalizada (una de entrada con cinco neuronas, dos capas ocultas, en la primera se adiciona una neurona por cada caso entrenado y en la segunda oculta dos neuronas receptoras para regresión y una capa de salida con una neurona). Se concluyó que la topología más adecuada fue la última con una asertividad de 96.9 por ciento frente a los datos reales y en su entrenamiento se obtuvo una correlación de 98.4 por ciento evidenciando además que los factores más influentes al modelo son: color, turbidez y pH. La red seleccionada finalmente permitió predecir la dosificación de coagulante óptimo con una probabilidad de error máximo de 1.6 por ciento y en tiempo real con nuevos valores de entrada en el agua a tratar sin necesidad de recurrir a la Prueba de Jarras el cual sólo se realiza posteriormente para enriquecer su aprendizaje.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.059308
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).